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ABSTRACT 

COMPOSITIONAL ANALYSIS OF LUNAR AND PLANETARY 
SURFACES USING NEUTRON CAPTURE GAMMA RAYS 

The ob jec t ive  of t h i s  research  program i s  t o  e s t a b l i s h  
t h e  p r a c t i c a b i l i t y  of using neutron capture  gamma rays as a 
p a r t  of NASA's combined neutron experiment f o r  lunar  and 
planetary su r face  analysis .  
necessary f irst  t o  determine the  f e a s i b i l i t y  of t h e  ana lys i s  
of  a semi - in f in i t e  material by means of t he  capture  gamma-ray 
technique using a pulsed high-energy neutron source,  secondly 
t o  assess  t h e  e f f e c t  on s e n s i t i v i t y  of i n t eg ra t ion  with t h e  
o t h e r  neutron techniques,  and l a s t l y ,  t o  determine t h e  
s e n s i t i v i t y  of  t h e  technique under reasonable f i e l d  condi t ions.  

Computer ca lcu la t ions  were performed using t h e  one- 
dimensional DTK neutron t r anspor t  computer code assuming 
an i s o t r o p i c  14-MeV neutron source on t h e  su r face  of a l a r g e  
sample, t o  help i n  understanding t h e  e f f e c t s  of composition, 
dens i ty ,  hydrogen content,  and p a r t i a l  moderators on t h e  
thermal f l u x  d i s t r i b u t i o n  wi th in  t h e  sample. The r e s u l t s  
predicted t h a t ,  i n  the  absence of  a moderating ma te r i a l ,  
t h e  f l u x  of  thermal neutrons increases  wi th  depth and reaches 

2 a maximum a t  about 90 gm/cm below the  su r face  of t he  sample. 
I f  a p a r a f f i n  r e f l e c t o r  a few cent imeters  i n  thickness  is 
placed above t h e  14-MeV neutron source,  however, t h e  thermal 
f l u x  a t  t h e  su r face  is  g rea t ly  increased,  and, i n  f a c t ,  has 
i t s  maximum value t h e r e ,  
v e r i f i e d  experimentally by measuring t h e  thermal f l u x  
d i s t r i b u t i o n  i n  a l a r g e  sand sample both with and without  a 
r e f l e c t o r  above t h e  14-MeV neutron source,  

such va r i ab le s  as t h e  length of t h e  sampling per iod,  the  
neutron pulse  r a t e ,  e t c , ,  on the  s e n s i t i v i t y  of  t h e  capture  

To accomplish t h i s  t a s k  i t  i s  

These computer pred ic t ions  were 

A parametric study w a s  made t o  determine the  e f f e c t s  of 
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gamma-ray technique. Results of  t h i s  s tudy have es tab l i shed  
t h e  f e a s i b i l i t y  of applying the  capture  gamma-ray technique 
t o  the  ana lys i s  of semi- inf in i te  sampleq using a pulsed 14-MeV 
neutron source. I n  addi t ion,  it w a s  determined t h a t  a good 
q u a l i t y  capture  gaunna-ray spectrum can be obtained under 
t h e  following condi t ions : 1) hor izonta l  detector-source 
geometry, wi th  the  de tec tor  located 27 cm from t h e  source,  
2) a 15-cm copper shadow shield located between t h e  de tec tor  
and t h e  source,  3) an 8-cm paraf f in  r e f l e c t o r  located above 
t h e  source,  4 )  a 500-pps neutron pulse  r a t e ,  and 5) one 
250-psec sampling period a f t e r  each neutron pulse  ( t o  obtain 
capture  gamma-ray data)  and an equal sampling period j u s t  
before  each neutron pulse  ( t o  obtain background da ta) .  

t h a t  the  capture  gamma-ray technique i s  f e a s i b l e  with a 
pulsed source of high-energy neutrons and t h a t  c e r t a i n  
cons t r a in t s  on t h e  combined neutron experiment would increase  
t h e  u t i l i t y  of  t h i s  technique. Further  s tudy i s  required 
t o  e s t a b l i s h  t h e  s e n s i t i v i t y  of t h e  capture  gamma-ray technique 
i n  t h e  combined experiment and t o  a s c e r t a i n  the  compatibi l i ty  
of  these  cons t r a in t s  with the o ther  experiments t o  be 
included. 

4 

As a r e s u l t  of  t h i s  study, then, it has been concluded , 

i v  
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CHAPTER I 

INTRODUCTION 

One of t h e  objec t ives  of  t h e  space program i s  t o  
a s c e r t a i n  the  composition of l una r  and p lane tary  sur faces .  
Such information i s  of grea t  importance t o  those i n  t h e  
s c i e n t i f i c  community who a r e  concerned wi th  t h e  o r i g i n  and t h e  
evolut ion of t h e  moon and planets.  Unfortunately, it does not  
appear t h a t  a s i g n i f i c a n t  number of  samples w i l l  be re turned 
from t h e  moon f o r  d e t a i l e d  ana lys i s  i n  the  foreseeable  fu tu re ,  
and none w i l l  be a v a i l a b l e  from t h e  p lane ts .  Therefore, 
remote ana lys i s  of t hese  surfaces  i s  required.  It i s  f o r  
t h i s  reason t h a t  NASA is present ly  developing a combined 
neutron experiment (l) for compositional ana lys i s  . 

Four d i f f e r e n t  neutron a n a l y t i c a l  methods ( i n e l a s t i c  
neutron s c a t t e r i n g ,  cap ture  gamma-ray ana lys i s ,  a c t i v a t i o n  
ana lys i s ,  and thermal neutron die-away) are being in t eg ra t ed  
i n t o  a s i n g l e  package, each of which is  t o  u t i l i z e  t h e  s a m e  
gamma-ray de tec to r ,  14-MeV pulsed neutron source,  and t h e  
same multichannel pu lse  height analyzer .  The four methods 
d i f f e r  in the neutynn p r ~ p e r t l e s  r?+, i l ized .  
rays r e s u l t  from t h e  i n e l a s t i c  s c a t t e r i n g  of fast neutrons 
and have d i s c r e t e  energies  c h a r a c t e r i s t i c  of  t h e  s c a t t e r i n g  
nuc le i .  Capture gamma rays ar ise  from t h e  decay of exc i ted  
energy l e v e l s  of  a compound nucleus a f t e r  t h e  capture  of a 
neutron by a parent  nucleus. 
c h a r a c t e r i s t i c  o f  t h e  compound nucleus. 
rays  are  assoc ia ted  wi th  t h e  beta decay of r ad ioac t ive  n u c l e i  
produced by e i t h e r  fast neutron r eac t ions  o r  thermal neutron 
capture .  The l i f e t i m e  t h a t  t h e  thermal neutrons exh ib i t  
i n  a semi - in f in i t e  sample (die-away) is a measure of t h e  
macroscopic neutron absorption c ross  sec t ion ,  which is  a 
func t ion  of t h e  material composition and densi ty .  

E’rcq?f: g ~ m ~ z  

The capture  r a d i a t i o n  i s  
Act ivat ion gamma 

1 



Three of these methods ( i n e l a s t i c  s c a t t e r i n g ,  cap ture  
gamma rays,  and ac t iva t ion  ana lys i s )  can provide elemental 
ana lys i s ;  two of t h e  methods (capture  gamma ray and neutron 
die-away) can determine t h e  presence of  hydrogen, and one of  
the  techniques (neutron die-away) can g ive  some indica t ion  of 
t he  presence o r  absence o f  near-surface layer ing.  Thus, t h e  
combined neutron experiment w i l l  provide information on both 
elemental composition and density.  

f e a s i b i l i t y  s tud ie s  on t h e  capture  gamma-ray port ion of t he  
combined experiment. Measurements of t h e  capture  gamma-ray 
spectrum from a l a r g e  iron-sand sample have been made under 
varying condi t ions using a pulsed 14-MeV neutron source and 
a 3 in.  x 3 in .  NaI(T1) gama-ray detector .  A s  a r e s u l t  of 
these  s tud ie s  the  following t e n t a t i v e  conclusions have been 
reached: 

The present  repor t  i s  concerned wi th  the  r e s u l t s  of 

1) The f e a s i b i l i t y  of t he  ana lys i s  of a semi - in f in i t e  
material by means of t he  capture  gamma-ray technique has been 
es tab l i shed  using a pulsed 14-MeV neutron source. 

2) The capture  gamma-ray experiment can provide an 
ana lys i s  i n  t h e  form of r e l a t i v e  elemental abundances. Since 
only a samy1-P cnntaining i ron ,  s f l i r n n ,  and oxygen has heen 
examined thus f a r  by t h i s  technique, t he  number of elements 
t h a t  can be measured is a s  yet undetermined. 

3) The oxygen-silicon r a t i o  can be establ ished by 
c y c l i c  ac t iva t ion .  When more complex samples are examined, 
o ther  elements (such as A 1  or  Mg) may a l s o  be detectable .  

4) The capture  gama-ray technique is  s e n s i t i v e  t o  
2 t h e  material composition t o  a depth of 10 t o  20 gm/cm . 

5) The compatibi l i ty  of  t he  four  experiments has not  
y e t  been f i rmly establ ished.  However, we a r e  confident  t h a t ,  
wi th  reasonable t rade-of fs  the  capture  gamma-ray experiment 
can be made compatible with the  other  experiments. 

2 



In  Chapter 11 the  appl ica t ion  of r a d i a t i v e  capture  of 
thermal neutrons t o  elemental ana lys i s  is  discussed, as w e l l  
as those areas  t h a t  w i l l  require  inves t iga t ion  i f  the  
technique i s  t o  be appl ied t o  semi- inf in i te  samples with the  
a i d  of pulsed 14-MeV neutron sources.  

I n  Chapter I11 the  thermal neutron d i s t r i b u t i o n  t h a t  
r e s u l t s  within a semi- inf in i te  mater ia l  when a high energy 
neutron source is placed on the sur face  of t h e  material is  
described. This thermal neutron d i s t r i b u t i o n  was determined 
both experimentally and by a one-dimensional neutron t ranspor t  
ca lcu la t ion .  

procedures t h a t  have been used i n  t h e  capture  gama-ray 
exper imentat ion . 
t h a t  have been made t o  determine the  e f f e c t  of var ious 
experimental parameters on t h e  s e n s i t i v i t y  of t h e  capture  
gamma-ray technique. 

I n  Chapter V I  t he  major areas t h a t  r equ i r e  fu r the r  
s tudy t o  e s t a b l i s h  the  s e n s i t i v i t y  of  the  capture  gamma-ray 
technique and t h e  f e a s i b i l i t y  of  the  combined neutron experi-  
ment a r e  out l ined.  

Chapter I V  i s  a descr ipt ion of the  equipment and 

Chapter V contains  a de ta i led  account of t he  s tud ie s  

3 



CHAPTER I1 

THERMAL NEUTRON CAPTURE GAMMA-RAY ANALYSIS 

For most elements, the  (n,?) reac t ion  i s  t h e  only nuclear  
r eac t ion  which can occur when a sample is  i r r a d i a t e d  with 
thermal neutrons. (A  few l i g h t  elements i n  which alpha 
p a r t i c l e  o r  proton emission can occur and t h e  f i s s ionab le  
isotopes a r e  exceptions.) Neutron capture  l e a d s  t o  the  
formation of  a compound nucleus i n  an exci ted s t a t e ,  with an 
e x c i t a t i o n  energy e s sen t i a l ly  equal t o  the  neutron binding 
energy (usual ly  5 t o  8 MeV). Decay t o  t h e  ground s t a t e  occurs 
promptly (within approximately seconds),  normally through 
seve ra l  intermediate  energy s t a t e s ,  by gamma-ray emission. A s  
a r e s u l t  of t h i s  decay through the  intermediate  states, neutron 
capture  gama-ray spec t ra  are ,  i n  general ,  complex. These 
spec t r a ,  which are c h a r a c t e r i s t i c  of t h e  emit t ing isotope,  
w i l l  cons i s t  of both high and low energy gamma rays.  

neutrons with l i t t l e  o r  no a t tenuat ion ,  capture  gama-ray 
production i s  d i r e c t l y  proport ional  t o  the  t o t a l  neutron 
capture  cross  sec t ion  of the sample;  In a sample ccr?t&~ing 

seve ra l  elements, the  quant i ty  a / A  f o r  each element (where CT 

i s  t h e  thermal neutron capture cross  sec t ion  f o r  a p a r t i c u l a r  
element and A is  i ts  atomic weight) provides an ind ica tor  of 
t he  r e l a t i v e  s e n s i t i v i t i e s  (measured i n  u n i t s  of weight 
percent)  fo r  measurement of those elements using a neutron 
capture  gamma-ray technique. Table 1 shows values of weight 
percent  mult ipl ied by cr/A for t h e  elements occurr ing i n  
g r a n i t e ,  andes i tes ,  b a s a l t ,  and duni te .  It must be emphasized 
t h a t  t h e  product (Wt percent)(o/A) does not  take i n t o  account 
branching r a t i o s ,  detect ion e f f i c i e n c i e s ,  in te r fe rences ,  o r  
o the r  e f f e c t s ,  and is ,  therefore ,  an ind ica to r  only of t h e  
r e l a t i v e  numbers of neutrons captured by each element i n  the  
sample. 

For a t h i n  sample, tha t  i s ,  f o r  a sample which t ransmits  
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Laboratory U s e  of Capture Gamma-Ray Analysis With Thermal 
Neutrons 

It would be in s t ruc t ive  t o  perform a capture  gamma-ray 
ana lys i s  i n  t h e  laboratory on a sample which is s i m i l a r  t o  
lunar  material. A t  t h i s  time, however, t h e  only ex i s t ing  data 
regarding t h e  type of material t o  be encountered on t h e  moon 
are t h e  gamma-ray s p e c t r a l  measurements made by t h e  Soviet  
lunar  o r b i t e r  , "Luna 10". 

A. P. Vinogradov e t  al. (2) r epor t  t h a t  t h e  potassium, 
thorium, and uranium concentrat ions i n  those regions of t h e  
lunar  sur face  where measurements were made a r e  c lose  t o  t h e  
composition of t e r r e s t r i a l  rocks of bas ic  composition (such 
as b a s a l t ) .  Vinogradov does not  exclude, however, t h e  
p o s s i b i l i t y  of the  exis tence of  u l t r a b a s i c  (meteori te)  matter 
f o r  t hese  regions of t h e  lunar  surface.  I f  one assumes t h a t  
t h e  lunar  sur face  has the  composition of b a s a l t ,  t h e  elements 
one would expect t o  de t ec t ,  i n  order  of decreasing " sens i t i v i ty"  
as indicated i n  Table 1 would be i ron ,  s i l i c o n ,  t i tanium, 
calcium, aluminum, potassium, hydrogen, manganese, sodium, 
and magnesium, 
obtained from a beam of thermal neutrons from a reac to r  

NaI(T1) detector ,  is shown i n  Figure 1. Iron,  s i l i c o n ,  
hydrogen, t i tanium, and possibly a l s o  aluminum, sodium, and 
calcium are detectable .  

p resent ly  ava i l ab le  Ge(Li) detectors  of much b e t t e r  reso lu t ion  
(- 3 keV FWHM) and s m a l l  volume (1 cm ), t h e  comparison 
spectrum shown i n  Figure 2 was obtained. This b a s a l t  spectrum 
taken with a Ge(Li) detector  provides t h e  data necessary t o  
obta in  t h e  r e l a t i v e  concentrations of a l l  t h e  elements l i s t e d  
i n  Table 1 except magnesium and oxygen. 

The capture  gamma-ray spectrum of  b a s a l t  

inc ident  on siilali saiiLpie of .L - -  -1 L ~ c l a d ~ ~ ,  usiiig a 3 in. x 3 iii. 

To demonstrate t h e  improved r e s u l t s  a t t a i n a b l e  using 
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The complexity of capture gamma-ray spec t r a  r e s u l t s  i n  
many in te r fe rences  between elements when a r e l a t i v e l y  low 
reso lu t ion  de tec tor ,  such as NaI(Tl),  is used. As can be 

seen r ead i ly  from a comparison of the  two spec t r a ,  t h e  improved 
reso lu t ion  obtainable  from a Ge(Li) de tec tor ,  as opposed t o  
t h a t  from a NaI(T1) de tec tor ,  g r e a t l y  enhances the  value of  
the  method by el iminat ing p r a c t i c a l l y  a l l  such in te r fe rences .  
However, s i n c e  space-hardened Ge(Li) de tec tors  are not  as ye t  
ava i lab le ,  t he  present  f e a s i b i l i t y  s t u d i e s  were conducted 
with a 3 in .  x 3 in.  NaI(T1) de t ec to r  of reasonable reso lu t ion  
(7.2 percent FWHM a t  0 .662  MeV). 
decreases the  s e n s i t i v i t y  of t h e  capture  gamma-ray technique, 
Figure 1 demonstrates t h a t  valuable information can be 
obtained even wi th  a NaI(T1) de tec tor .  

Capture Gamma-Ray Analysis Using Fast  Neutrons 

Although t h i s  r e s t r i c t i o n  

The capture  gamma-ray technique has here tofore  required 
a thermal neutron source and s m a l l  samples. 
experiment w i l l  use  a pulsed 14-MeV neutron source and a 
semi - in f in i t e  sample, t he  f e a s i b i l i t y  of t h e  capture  gamma-ray 
technique under these  conditions has been t h e  subjec t  of  t h e  
y - e s p n t  .s+l~d_y- 
inves t iga t ion :  

Since t h e  combined 

Thprp are a- nt imher  nf a r e a s  t h a t  have reqtlfred 

1. The capture  gamma-ray technique requi res  t h e m 1  
neutrons;  therefore ,  a f r a c t i o n  of t h e  14-MeV neutrons 
emitted from the  source must be reduced i n  energy, 
e i t h e r  by the  sample i t s e l f  o r  by some o ther  means, t o  
provide a usable  thermal f l u x  within the  sample. I n  
addi t ion ,  it i s  des i rab le  t o  determine t h e  r e s u l t a n t  
neutron f l u x  d i s t r ibu t ion  (both thermal and 14 MeV) 
within a semi - in f in i t e  material, s i n c e  i t  is t h i s  
d i s t r i b u t i o n  t h a t  determines the  production of capture  
garmna rays.  The optimum detec tor  pos i t ion ,  as wel l  as 
t h e  degree t o  which the gamma rays a r e  a t tenuated and 
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degraded, depends on the  depth and t h e  pos i t ion  i n  the  
mater ia l  from which these gamma rays o r ig ina t e .  
Therefore, the  e f f e c t  of severa l  parameters (densi ty ,  
composition, hydrogen content ,  e tc . )  on t h e  neutron 
f l u x  d i s t r i b u t i o n  within a semi- inf in i te  material has 
been examined q u a l i t a t i v e l y  wi th  a one-dimensional 
t ranspor t  computer code. The r e s u l t s  of  these  ca lcu la-  
t i o n s ,  as w e l l  as the  experimental f l u x  mapping of  a 
l a r g e  sand sample, a r e  discussed i n  Chapter 111. 

2. While neutron ac t iva t ion  and neutron i n e l a s t i c  
s c a t t e r i n g  produce gamma rays of i n t e r e s t  t o  o ther  
port ions of t he  combined experiment, these gamma rays 
c o n s t i t u t e  background (or noise)  fo r  t h e  capture  gama-  
ray  experiment; t h e  in te r fe rence  they produce must 
therefore  be minimized. 
source can be used t o  advantage i n  t h i s  regard.  

s c a t t e r  a r e  prompt, t ha t  is ,  they are present  only 
during the  neutron pulse. The capture  gamma rays ,  
however, reach a maximum i n t e n s i t y  s h o r t l y  a f t e r  t h e  
neutron pulse  (as t he  neutrons a r e  thermalized) ,  then 

of  t h e  material ( typ ica l ly  200 psec). In te r fe rence  
from the  i n e l a s t i c  gama rays can therefore  be removed 
by inh ib i t i ng  t h e  pulse height  analyzer (PHA) during 
the  neutron pulse ,  while these  gamma rays are present .  
The gamma-ray spectrum immediately a f t e r  each neutron 
pulse  can be sampled (by gat ing t h e  PHA on) t o  obtain 
t h e  composite spectrum of  the  capture  and ac t iva t ion  

The pulsed na ture  of t h e  neutron 

The gamma rays associated with neutron i n e l a s t i c  

decay s x p o n e ~ t i a l l y  - . v < t h  o C1nn-q~ n r r - o t o n t  n h o r ~ n t a r < a t 4 n  
W A L C L L  U ULLUJ L W L A U L U L L C  b I I U L U L C L L  A U L A -  

gamma rays.  
The ac t iva t ion  gamma rays,  on t h e  o the r  hand, 

general ly  exhib i t  a h a l f - l i f e  which is long compared 
t o  the  time between pulses. Therefore, a build-up 
i n  t h i s  type of a c t i v i t y  occurs during the  neutron 

10 



i r r a d i a t i o n ,  and the  decay between pulses  is negl ig ib le .  
A measure of  t h e  ac t iva t ion  gamma rays (plus  the  cosmic 
r ay  background) can be made by sampling the  gamma 
spectrum j u s t  before each neutron pulse ,  s ince  most of  
t he  capture  gamma rays w i l l  have decayed away by t h a t  t i m e .  
Thus, by e l ec t ron ica l ly  con t ro l l i ng  the  PHA and by 
proper choice of  neutron pulse  r e p e t i t i o n  r a t e ,  t h e  
in t e r f e rence  from t h e  i n e l a s t i c  gamma rays can be 
removed and the  background produced by neutron ac t iva t ion  
(and cosmic rays)  can be separated from the  capture  
gamma rays.  

of  t he  t h r e e  types of gamma rays as a function of t i m e .  
The time i n t e r v a l s  S1 and S2 correspond t o  the  times 
during which the  PHA w i l l  accept  gamma ray  counts f o r  
t h e  capture  experiment. 
t h e  choice of  S1 and S2 t o  achieve the  g r e a t e s t  accuracy 
i n  t h e  separat ion of t h e  a c t i v a t i o n  gamma rays from 
t h e  capture  gamma rays.  

3 .  Neutrons in t e rac t ing  with t h e  N a I  de tec tor  a r e  
responsible  fo r  a portion of the  measured background. 
These neutrons can r e s u l t  i n  t he  production of 
(a) rad ioac t ive  isotopes , primari ly  I 128 and N a  , 
(b) capture  gamma rays from iodine and sodium, and 
(c) neutron i n e l a s t i c  s c a t t e r  gama  rays from iodine and 
sodium. The e f f e c t s  of t he  i n e l a s t i c  s c a t t e r  gamma rays 
are r e a d i l y  eliminated by ga t ing  the  PHA off  during t h e  
pulse ,  as described above. The experimentation t h a t  has 
been performed t o  determine t h e  sh ie ld ing  necessary t o  
minimize t h e  production of  rad ioac t ive  isotopes and 
capture  gamma rays within t h e  de tec tor  i s  discussed 
i n  Chapter I V .  

Figure 3 i l l u s t r a t e s  schematical ly  the  behavior 

Appendix A shows how t o  optimize 

24 
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Figure 3 
TIME RELATIONSHIP OF THE GAMMA RAYS 

PRESENT I N  THE COMBINED NEUTRON EXPERIMENT 
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CHAPTER I11 

, DETERMINING THE NEUTRON FLUX DISTRIBUTION 
WITHIN A SEMI-INFINITE MATERIAL 

The combined neutron experiment requi res  high energy 
neutrons (> 11 MeV) f o r  t he  i n e l a s t i c  neutron s c a t t e r  and f a s t  
neutron a c t i v a t i o n  ana lys i s  port ions of the  experiment. 
The capture  gamma ray port ion,  however, requi res  the  presence 
of thermal neutrons.  
used i n  t h e  combined experiment, it i s  necessary t o  determine 
the  thermal neutron f l u x  d i s t r i b u t i o n  t h a t  r e s u l t s  within 
a semi- inf in i te  ma te r i a l  when a high energy neutron source is 
placed on i t s  surface.  A discussion of t he  determination of 
t he  thermal neutron f l u x  d i s t r i b u t i o n  produced by a high 
energy neutron source and the f a c t o r s  t h a t  inf luence the  f l u x  
d i s t r i b u t i o n  c o n s t i t u t e s  t h e  content  of  t h i s  chapter .  

Since only one neutron source i s  t o  be 

The High-Energy Neutron Source 
4 The T(d,n)He reac t ion  is a primary source f o r  t he  

production of neutrons with energies i n  the  range 1 2  t o  30 MeV. 
Because of  t h e  l a r g e  value of t h e  c ross  sec t ion  a t  a deuteron 
energy of - 100 keV and t h e  l a rge  Q value of 17.6 MeV, t h i s  
r eac t ion  is  an idea l  source fo r  t he  production of  14-MeV 
neutrons u t i l i z i n g  compact low vol tage acce le ra to r s  and th i ck  
t a r g e t s .  I n  addi t ion,  t h e  14-MeV neutrons produced i n  t h i s  
r eac t ion  are e s s e n t i a l l y  i so t rop ic  f o r  deuteron energies  
below 0.5 MeV. (3,4) 

Furthermore, fo r  deuterons whose energies  are i n  t h e  
hundreds of  keV, the  only leve l  i n  He5 which can be populated 
is a t  16.70 MeV. Since gama decay of  t h i s  exci ted s t a t e  
t o  t h e  ground s ta te  of He5 is highly forbidden, and s ince  no 
l e v e l s  e x i s t  i n  He5 below 16.70 MeV, t h e  T(d,n)He 
produces neutrons with no gama-ray contamination. For 

4 r eac t ion  
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t hese  reasons,  t h e  T(d,n)He 4 r e a c t i o n  w a s  chosen by NASA as 

t h e  source of neutrons t o  be used f o r  t h e  combined neutron 
experiment . 
Calculated Thermal Neutron Flux Di s t r ibu t ion  

The use of such a 14-MeV neutron source f o r  a neutron 
cap tu re  gamma-ray experiment requi res  t h e  cons idera t ion  of the 
thermal neutron d i s t r i b u t i o n  that  r e s u l t s  wi th in  a s e m i -  
i n f i n i t e  material when an i so t rop ic  source is placed on i ts  
s u r f a c e  and t h e  parameters t h a t  affect  t h i s  d i s t r i b u t i o n .  

A neutron t r anspor t  computer code (DTK) w a s  used t o  
i n v e s t i g a t e  these  a reas .  This s teady s ta te  one-dimensional 
code, which w a s  developed a t  Los Alamos S c i e n t i f i c  Laboratory 
(LASL), is  based on t h e  Sn method. (5) 
using 1 9  neutron energy groups, were made on t h e  I I T R I  IBM 7094 
computer. 

The one-dimensional ca l cu la t ions  of t h e  f l u x  d i s t r i b u t i o n  
wi th in  a semi - in f in i t e  medium assume t h e  geometry of  Figure 4 .  
Since t h i s  geometry i s  only a rough approximation t o  t h e  
actual experimental geometry (Figure 5 ) ,  care must be exercised 
i n  i n t e r p r e t i n g  t h e  r e s u l t s .  However, these  ca l cu la t ions  are 
h e l p f u l  i n  determining t h e  e f f e c t s  of composition, dens i ty ,  
hydrogen content ,  and r e f l e c t o r  ma te r i a l  on t h e  general  
f e a t u r e s  of t h e  neutron f l u x  d i s t r i b u t i o n .  These effects 
w i l l  be  t r e a t e d  sepa ra t e ly  below. 

The ca l cu la t ions ,  

1. Effects of Composition and Density 

The ca l cu la t ions  of  neutron f l u x  d i s t r i b u t i o n  were 
performed f o r  t h r e e  hypothet ical  materials ( see  Table 2 ) ,  
wi th  no pa ra f f in  r e f l e c t o r  above t h e  source. 

14 



N eu t r on 
Source 
Position 

Material I - Hypothetical Lunar 
Surface 

Material I1 - R e f l e c t o r  
(it usea) 

t 
m 

I Material I1 

Material I 

FIGURE 4 

ONE DIMENSIONAL GEOMETRY USED FOR COMPUTER CALCULATIONS 
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FIGURE 5 

EXPERIMENTAL GEOMETRY 
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Table 2 
ASSUMED SAMPLE COMPOSITIONS FOR COMPUTER CALCULATIONS 

W t %  0 W t %  S i  W t %  Fe W t %  Mg p(gm / c m  3) 

Material A 50 30 10 10 2.0 
Material B 30 15  30 25 2.0 
Material C 50 30 10 10 1.0 

Figure 6 compares t h e  ca lcu la ted  thermal neutron f l u x  
d i s t r i b u t i o n  ( f l u x  as a funct ion of depth) i n  materials 
A and B. The maximum thermal neutron f l u x  occurs a t  a 
depth of  about 45 cm independent of t h e  bulk composition. 
The magnitude of t h e  t h e r m a l  f l u x  is  lower i n  material B 
than i n  material A because of  t h e  r e l a t i v e l y  l a r g e  
thermal neutron reac t ion  c ross  sec t ion  of i ron.  
t h e  most s i g n i f i c a n t  r e s u l t  of t hese  ca l cu la t ions  is  
t h a t  t h e  thermal neutron f l u x  reaches a maximum a t  an 

which implies t h a t  t h e  bulk of t h e  thermal neutron 
capture  gama rays must pene t r a t e  r e l a t i v e l y  l a r g e  
c L l ~ ~ ~ L l e b ~ e ~  of ulaieriai ii' ihey are t o  be observed. 

suggest t h a t ,  as one would expect, t h e  densi ty  has no 

neutron f l u x  is maximum. 

Perhaps 

appreciable  d is tance  below t h e  su r face  (90 gm/cm 2 ), 

LL 2 -l-- - - 

The r e s u l t s  of t h e  comparison of materials A and C 

e f f e c t  on t h e  depth ( i n  gm/cm 2 ) a t  which t h e  thermal 

2. Effects of Hydrogen Content 

Since hydrogen could be present  on the  lunar  
su r face  i n  t h e  form of water of  hydration, ca l cu la t ions  
have been made  with the DTK code t o  determine t h e  e f f e c t  
a reasonable hydrogen concentration might have on t h e  
thermal neutron f l u x  d i s t r i b u t i o n .  A s  expected, 
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hydrogen f a c i l i t a t e s  thermalizat ion (see Figure 7) . 
t h e  hydrogen content  increases, t h e  maximum i n  t h e  thermal 
neutron f l u x  d i s t r i b u t i o n  approaches t h e  su r face ;  however, 
even wi th  an assumed hydrogen concentrat ion as high as 
0.1 percent (- 1 percent H20) , t h e  peak i n  t h e  thermal 

can be concluded t h a t  t h e  presence of hydrogen (within 
reasonable l i m i t s )  does not  g r e a t l y  pe r tu rb  t h e  thermal 
f l u x  d i s t r i b u t i o n .  

A s  

f l u x  i s  s t i l l  about 70 gm/cm 2 below t h e  surface.  Thus, it 

3. E f fec t s  of Reflector  

With an i so t rop ic  neutron source placed above t h e  
su r face  of a semi- inf in i te  material ,  only ha l f  t h e  
neutrons s t r i k e  t h e  mater ia l ,  t h e  o the r  h a l f  being l o s t  
t o  t h e  atmosphere. 
technique could be found which would make use of t hese  
neutrons. 
would ref lect  some of these neutrons i n t o  t h e  sur face ,  
thereby increasing the  low energy neutron f l u x  without 
decreasing t h e  f a s t  neutron f l u x  inc iden t  on t h e  sur face .  
This increased low-energy neutron f l u x  w i l l  increase  
t h e  s e n s i t i v i t y  of the neutron capture  gamma-ray 
technique .  

It would be highly d e s i r a b l e  i f  a 

A low-Z material placed above t h e  source 

One-dimensional ca l cu la t ions  were made using t h e  
DTK code assuming t h e  geometry t o  be t h a t  shown i n  
Figure 4 .  The r e s u l t s  are shown i n  Figure 8. The 
r e f l e c t o r  w a s  assumed t o  have t h e  composition of  l i g h t  
water and t o  have va r i ab le  thickness  (0, 4 cm,  8 cm,  
and 1 3  cm) .  The 8-cm r e s u l t s  are not  included i n  
Figure 8, s i n c e  they a r e  near ly  ind i s t ingu i shab le  from 
t h e  13-cm thickness  r e s u l t s .  The ca l cu la t ions  i n d i c a t e  
t h a t  t h e  thermal neutron f l u x  is  g r e a t l y  increased near  
t h e  su r face  and, i n  f a c t ,  i s  a maximum a t  t h e  surface.  
It i s  expected t h a t  t h i s  c a l c u l a t i o n  may have l a r g e  
e r r o r s  assoc ia ted  w i t h  i t  because of t h e  assumed geometry. 
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THERMAL NEUTRON FLUX D I S T R I B U T I O N  
AS A FUNCTION OF REFLECTOR THICKNESS 
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This geometry r e s u l t s  i n  a high p robab i l i t y  f o r  neutrons 
t o  be s c a t t e r e d  out  of zone I (sample) i n t o  zone I1 
( r e f l e c t o r )  where t h e  neutrons may again scat ter  and be 
returned t o  zone I. I n  t h e  a c t u a l  geometry, t h e  
p robab i l i t y  f o r  t h i s  occurrence is  q u i t e  s m a l l ,  s i n c e  
t h e  r e f l e c t o r  has a small area. However, two conclusions 
can be drawn: (1) a low-Z material above t h e  neutron 
source ac t ing  as a r e f l e c t o r  w i l l  i nc rease  t h e  thermal 
f l u x  a t  t h e  sur face ,  and (2) t h e  thickness  of a 
hydrogeneous moderator need not  be i n  excess of about 
1.5 gm/cm of hydrogen. 

2 

Since t h e  neutron f l u x  d i s t r i b u t i o n  wi th in  a l a r g e  
sample w i l l  exh ib i t  a x i a l  symmetry ( i f  t h e  neutron emission 
is  i s o t r o p i c  o r  a x i a l l y  symmetric), f a r  more r e a l i s t i c  r e s u l t s  
could be obtained i f  these  ca lcu la t ions  were performed using 
two-dimensional t r anspor t  theory. Several  a t tempts  were made 
t o  apply t h e  LASL two-dimensional neutron t r anspor t  code DDK 
t o  these  ca l cu la t ions  . These attempts were unsuccessful 
because of  d i f f i c u l t i e s  i n  mesh point  spacing and the  very 
large demands on core  storage.  

Since t h e  one-dimensional ca l cu la t ions  can provide only 
2 qual i t2 t ive  l lnderctanding n f  the ef fec t  n f  parameters s12ch 
as composition, dens i ty ,  hydrogen conten t ,  and p a r t i a l  
r e f l e c t o r s  on t h e  thermal neutron f l u x  d i s t r i b u t i o n ,  one must 
resor t  t o  experimental techniques t o  g e t  r e l i a b l e  q u a n t i t a t i v e  
r e s u l t s .  

Experimental Determination of t h e  Thermal Neutron Flux 
D i s t r i b u t i o n  

The thermal neutron f lux  d i s t r i b u t i o n  wi th in  a l a r g e  
sample w a s  measured by f o i l  ac t iva t ion .  A 60 in .  x 60 in .  x 30 in .  
sand sample provided a very convenient approximation t o  a 
s e m i - i n f i n i t e  medium. The spec i f i ca t ions  suppl ied by t h e  
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manufacturer indicated t h a t  the sand w a s  k i ln -d r i ed  and 
3 contained 99.88 percent S i 0 2  wi th  a dens i ty  of 1 .6  gm/cm . 

I n i t i a l  measurements made on t h e  sample showed t h a t  t h e r e  
w a s  < 0.45 percent H 0 and t h a t  t h e  m a t e r i a l  bulk dens i ty  
w a s  1.74 gm/cm . 

Neutron a c t i v a t i o n  fo i l s*  were placed a t  seve ra l  l oca t ions  
wi th in  t h e  l a r g e  sample. A combination of bare  gold f o i l s  and 
cadmium-covered gold f o i l s  was used f o r  t h e  thermal neutron 
f l u x  measurements. The 14-MeV neutron f l u x  w a s  measured by 
a copper f o i l  on t h e  sample sur face  d i r e c t l y  below t h e  neutron 
source. The I I T R I  Van d e  Graaff a c c e l e r a t o r  w a s  used t o  
produce t h e  required 14-MeV neutrons v i a  t h e  D-T reac t ion .  
The f i r s t  i r r a d i a t i o n  of these  f o i l s  w a s  made wi th  t h e  neutron 
source posi t ioned 15 c m  above t h e  sample. The copper f o i l  
w a s  counted and t h e  14-MeV neutron f l u x  w a s  determined i n  
accordance wi th  t h e  Texas Convention. (6) This s a m e  geometry 
w a s  used t o  count t h e  gold f o i l s  and the cadmium-covered gold 
f o i l s  f o r  determining t h e  the rma l  neutron f l u x  d i s t r i b u t i o n .  
A summary of t hese  measurements is  presented i n  Table 3 .  The 
thermal f l u x  a t  the  sur face  w a s  too s m a l l  t o  measure; only 
an upper l i m i t  of  1 x 10 n/cm sec  can be assigned. The 
thermal f l u x  increased wi th  depth and reached a value 
of 2 . 3  x 10 n/cm s e c  a t  95 g m / c m  . The 14-MeV neutron f l u x  
inc iden t  on t h e  su r face  d i r e c t l y  below the  source was 
4.8 x 10 n/cm sec.  

made under t h e  geometry described i n  Figure 5 wi th  the  neutron 
source again posi t ioned 15 cm above t h e  sample. Paraf f in  4 c m  
t h i c k  placed only above t h e  neutron source w a s  used as t h e  
r e f l e c t i n g  material. The f o i l  a c t i v a t i o n  technique described 
above w a s  used t o  measure t h e  r e s u l t i n g  neutron f l u x  d i s t r i b u -  
t i on .  The add i t ion  of t h e  r e f l e c t o r  had a pronounced e f f e c t  

3 2 

2 2 

3 2 2 

5 2 

A second measurement of t h e  thermal neutron f l u x  w a s  

*The neutron a c t i v a t i o n  f o i l s  were obtained from Reactor 
Experiments, Inc. ,  Belmont, Cal i forn ia .  
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Table 3 

THERMAL FLUX DISTRIBUTION I N  SAND SAMPLE 
WITHOUT PARAFFIN ABOVE THE SOURCE 

Pos i t  ion Thermal Flux 
0 (n/cm2 sec)  

( o m  < 0 . 5  x lo2  
2 (0,8 cm) 0 .5  x 10 
2 3 . 5  x 10 (0,16 cm) 

(0,55 cm) 1.0 l o3  
(14-MeV neutron flux a t  (0,O) - 2.1 x 10 5 n/cm 2 sec) 
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on t h i s  d i s t r ibu t ion .  The most  important change w a s  t h a t  t h e  
thermal neutron f l u x  a t  t he  sur face  w a s  increased by a f a c t o r  
of about 100. Details of the measured f l u x  d i s t r i b u t i o n  
within t h e  sample are presented i n  Figure 9 and Table 4. 

To check t h e  isotropy o f  t he  neutron source,  copper 
f o i l s  were placed a t  0 degrees and 90 degrees with respect  
t o  t h e  deuteron beam. 
w a s  a f a c t o r  of  2.6 higher than the  f l u x  a t  90 degrees. 
the  neutron f l u x  emitted a t  90 degrees m u s t  pass through a 
t a r g e t  holder composed of copper and aluminum, the  d i f fe rence  
between t h e  0 degree and 90 degree f l u x  could be due t o  
s c a t t e r i n g  i n  the  t a r g e t  holder. The ca l cu la t ion  performed 
t o  estimate t h e  l o s s  i n  t h e  14-MeV f l u x  due t o  s c a t t e r i n g  i n  
t h e  t a r g e t  holder indicated t h a t  about one-half of t he  f l u x  
i s  l o s t .  
approximately i so t rop ic ,  t h e  e f f e c t i v e  14-MeV f l u x  is peaked 
i n  t h e  forward and backward d i rec t ions  by s c a t t e r i n g  i n  the  
t a r g e t  holder material. 

It was found that the  f l u x  a t  0 degrees 
Since 

Therefore, while t h e  neutron output of  the  t a r g e t  is  

Conclusion 

The agreement between the  computer pred ic t ions  and t h e  
experimental measurements i s  q u i t e  good. As predicted,  t he  
thermal f lux ,  i n  t h e  absence o f  any r e f l e c t o r  mater ia l ,  incrases  
monotonically wi th  increasing depth down t o  95 gm/cm . 
a 4-cm-thick pa ra f f in  r e f l e c t o r  above t h e  14-MeV neutron 
source,  t he  thermal f l u x  a t  the  sur face  is  increased by a 
f a c t o r  of 100 and has i t s  maximum value there .  

2 With 
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Thermal Flux Values are  Relative to T h e r m a l  Flux at the O r i g i n  

Thermal Flux a t  O r i g i n :  3.3 x l o 5  n / c m 2 / s e c  
14 MeV Flux at O r i g i n :  2.1 x 10 n / c m  /sec 

3 2 

FIGURE 9 

CONTOUR PLOT OF THE THERMAL FLUX D I S T R I B U T I O N  
I N  SAND SAMPLE WITH 4 c m  OF REFLECTOR 

ABOVE THE NEUTRON SOURCE 
AND SOURCE 15 cm ABOVE THE SAMPLE 
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Table 4 

THERMAL FLUX DISTRIBUTION I N  SAND SAMPLE 
W I T H  PARAFFIN ABOVE THE SOURCE 

P o s i t i o n  
0 Therma Flux  

( n / c 3  sec) 

(%O> 3 . 3  l o3  
( 0 4  cm) 3.0 l o 3  
(0 ,16  cm) 1 . 3  x 10 3 
(0,55 cm) 1 . 6  x 10 3 
(14-MeV neutron f l u x  at  (0,O) - 2 . 1  x 10 5 n/cm 2 sec) 

27  



8 -  
8 
1 
I 
1 
I 
8 
I 
8 
8 
I 
8 
1 
1 
8 
8 
8 
8 
8 

CHAPTER I V  

EXPERIMENTAL APPARATUS AND PROCEDURE 

To e s t a b l i s h  the  p r a c t i c a b i l i t y  of using thermal neutron 
capture  gamma rays as p a r t  of NASA's combined neutron experiment, 
t he  determination of  (1) the  f e a s i b i l i t y  of  ana lys i s  of  a 
semi - in f in i t e  mater ia l  by means of t he  capture  gamma-ray 
technique using a pulsed 14-MeV neutron source and (2) t he  
e f f e c t  on s e n s i t i v i t y  of in tegra t ion  with the  o the r  neutron 
techniques a r e  required.  Therefore, a parametr ic  s tudy w a s  
made t o  determine the  e f f ec t  of a number of  var iab les  on the  
s e n s i t i v i t y  of  the  technique. 
apparatus  and procedure used f o r  t h i s  parametric study follows, 
and the  r e s u l t s  are discussed i n  Chapter V. 

A descr ip t ion  of  the  experimental 

Neutron Source 

The IITRI Van d e  Graaff generator  w a s  used t o  produce 
t h e  14-MeV neutrons fo r  the  capture  gamma-ray experiments v i a  
t h e  T(d,n)He react ion.  
pulsed mode with an acce lera t ing  vol tage of  0.5 MeV and a 
beam curren t  of 5 uamps, 

is + 10 keV and the  ion current  s t a b i l i t y  is + 10 percent.  
In  t h e  pulsed mode t h e  r ise  and decay t i m e s  of  the  pulses  
are both l e s s  than 3 psec. The pulse  r a t e s  and durat ions 
t h a t  were used a r e  500 pps with 50 psec pulses  and 1000 pps 
wi th  10 psec pulses.  An air-cooled,  t r i t ium-t i tan ium t a r g e t  
wi th  a 10-mil-thick copper backing w a s  used. 

4 The Van de Graaff w a s  operated i n  a 

The pos i t i ve  vol tage s t a b i l i t y  

- - 

With an acce lera t ing  vol tage of 0.5 MeV, t he  t h e o r e t i c a l  
neutron output fo r  t he  T(d,n)He 4 reac t ion  is  approximately 

1.4 x 10 8 neutrons/pamp-sec. 
using copper ac t iva t ion  f o i l s  ( c f .  Chapter 111) indicated 
t h a t  t h e  ac tua l  output varied between 1.3 x 10 8 and 1 . 7  x 10 8 

neutrons/pamp-sec. 

Experimental r e s u l t s  obtained 

Because of t h i s  va r i a t ion  i n  t h e  neutron 
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output ,  a BF3 counter w a s  used t o  monitor t he  neutron output 
of t h e  acce lera tor  udring the  capture  gamma-ray experiments. 
The BF3 counter w a s  posit ioned under t h e  l a r g e  sample container  
d i r e c t l y  beneath t h e  t a r g e t ,  and measured t h e  thermal neutrons 
d i f fus ing  through t h e  sample. Neutron output  measurements 
were performed using copper a c t i v a t i o n  f o i l s  t o  obtain t h e  
neutron output per BF3 count f o r  each sample. Thus, f o r  a 
given sample, a BF3 count r a t e  could be r e l a t e d  d i r e c t l y  t o  
neutron output.  
checked before  and a f t e r  each capture  gamma-ray measurement 
using a Pu-Be neutron source mounted i n  a f ixed geometry, 
source-counter holder.  

The ca l ib ra t ion  of  t h e  BF3 counter was 

Gamma-Ray Detection 

The de tec t ion  of  the  capture gamma rays w a s  accomplished 
by a 3 in .  x 3 in .  NaI(T1) c r y s t a l  o p t i c a l l y  coupled t o  a 
RCA 8054 photomult ipl ier  (PM) tube. Neutrons s t r i k i n g  t h e  
c r y s t a l  can i n t e r a c t  with the c r y s t a l ,  producing capture  
g a m a  rays and gamma rays f r o m  the  decay of rad ioac t ive  
daughters (e .g , ,  I 128). Both of these  e f f e c t s  cause t h e  
background count rate t o  increase.  Therefore, it w a s  
des i r ab le  t o  sh i e ld  the  c r y s t a l  from both the  14-MeV and the 
tnermai neutrons. Several  shadow s h i e l d s  i n  t h e  form of 
t runcated cones of carbon and copper were s tudied  t o  sh i e ld  t h e  
c r y s t a l  from the  14-MeV neutrons emitted by the  source. Also, 
thermal neutron sh ie lds  composed of bora1 (A1 + B4C) and 
L i  F were invest igated.  
t h e  r e l a t i v e  1128 a c t i v i t y  produced i n  t h e  c r y s t a l  while using 
t h e  var ious sh ie lds .  Table 5 l i s ts  the  r e s u l t s  of these 
inves t iga t ions  . 
a 6-in. copper shadow sh ie ld  and a L i  F (47 mg/cm2 L i  ) thermal 
neutron sh ie ld .  The 6-in.  copper shadow s h i e l d  w a s  chosen as 
preferab le  t o  the  12-in.  carbon shadow s h i e l d  because t h e  former 

6 These s t u d i e s  consis ted of  measuring 

The most p r a c t i c a l  sh i e ld  combination w a s  found t o  be 
6 6 
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Table 5 

RELATIVE EFFICIENCIES OF SHIELDS FOR 
NEUTRON SHIELDING OF THE CRYSTAL 

Shie ld  Configuration 
Rela t ive  Shielding 

Thermal Shield Shadow Shield Eff ic iency  

None 
Boral 
Li6F 
Boral 
Boral 
Boral 
Boral 

None 
None 
None 

6-in. carbon 
12-in. copper 

6-in. copper 
12-in. carbon 

0.5 
0.7 
0.7 
0.9 
0.9 

1.0 
0.9 
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a 
would permit the  c r y s t a l  t o  be located c lose r  t o  the  neutron 
source. The L i  F thermal neutron s h i e l d  i s  preferab le  t o  the  
bora l  sh i e ld  because t h e  la t te r  requi res  the  addi t ion  of 1 / 2  in .  
of lead between t h e  c r y s t a l  and the  boral  t o  s h i e l d  against  
t h e  0.477-MeV gamma ray emitted following thermal neutron 
capture  i n  boron. 

6 

Data Collect ion 

The s igna l  from the  PMtube was appl ied t o  a s o l i d  s t a t e  
preamplif ier  of  un i ty  gain mounted on t h e  base of  t h e  detector .  
The schematic f o r  t h i s  preamplifier is  shown i n  Figure 10. 
The output from t h e  preamplif ier  was appl ied t o  a 512 channel 
pu lse  height  analyzer  (Nuclear Data, model 130). Signal  
amplif icat ion w a s  accomplished through the  ampl i f ie r  i n t e r n a l  
t o  the  analyzer.  
(Hamner model N401) w a s  used t o  supply high vol tage t o  the  
PM tube. 

input)  f o r  a prese t  t i m e  a f t e r  each neutron pulse  (e.g., 250 psec 
t o  450 psec a f t e r  t h e  beginning of t he  neutron pulse) with a 
dual  time base Tektronix model 547 osci l loscope.  The capture  
gamma-ray da ta  were accumulated i n  t h e  f i r s t  ha l f  of  the  
analyzer  memory (channels 1 t o  255). The timing cyc le  w a s  
i n i t i a t e d  by using t h e  pulse from the  A g a t e  of the  
osci l loscope used t o  monitor t h e  acce le ra to r  beam pulses.  
second run w a s  then made t o  obtain a background spectrum. 
t h i s  run, t h e  analyzer w a s  gated on fo r  a p rese t  time j u s t  
before  each neutron pulse  (e.g., 1750 psec t o  1950 psec a f t e r  
t h e  previous neutron pulse  f o r  a 500 pps pulse  rate),  and 
background d a t a  were accumulated i n  the  second ha l f  of  t h e  
analyzer  memory (channels 257 t o  511). The f i n a l  background- 
cor rec ted  capture  gamma-ray spectrum w a s  obtained by 
sub t r ac t ing  the  spectrum i n  the  second ha l f  of t h e  analyzer 
memory from t h e  spectrum i n  the  f i r s t  h a l f ,  a f t e r  normalizing 

A 2000-volt high s t a b i l i t y  power supply 

I n i t i a l l y ,  t h e  analyzer w a s  gated on (v ia  t h e  coincidence 

A 

For 
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t o  t he  t o t a l  neutron output from the  BF 
capture  gamma-ray run. 

had severa l  drawbacks. Separate runs were necessary fo r  
c o l l e c t i n g  t h e  capture  gamma-ray da ta  and the  background 
da ta ,  thereby doubling t h e  t i m e  necessary fo r  t h e  co l l ec t ion .  
Since t h e  neutron output  of  the acce le ra to r  can d i f f e r  during 
t h e  two runs,  t h e  spec t ra  had t o  be normalized t o  a given 
neutron output  before  background sub t r ac t ion  could be 
accomplished. Also, only a few sample durat ion t i m e s  could 
be obtained using prese t  posi t ions on the  osci l loscope cont ro ls  , 
Most sample durat ion times and a l l  delay times had t o  be s e t  
using continuously va r i ab le  controls .  
e r r o r s  i n  t h e  accuracy of the determination of these  time 
i n t e r v a l s  , 

These drawbacks i n  t h e  method of ga t ing  t h e  analyzer  l e d  
t o  t h e  design of  t h e  analyzer sequence switch ( see  Figure 11, 
l l a ,  l l b ) .  Instead of  using t h e  model 547  osci l loscope,  
t he  A g a t e  pulse  w a s  fed d i r e c t l y  i n t o  t h e  sequence switch 
which cont ro l led  both t h e  gat ing of t h e  analyzer (v i a  the  
coincidence input  of the analyzer) and the  rout ing of t h e  
s i g n a l  pulses  ( v i a  the Set  t o  0 and S e t  t o  256 inputs  of t he  
analyzer) .  
i n t o  t h e  f irst  h a l f  of the  analyzer memory and the  Se t  t o  256 
input  i s  used t o  route  the  s igna l  i n t o  the  second h a l f  of t he  
memory, 
capac i tors  whose e f f e c t s  on the time i n t e r v a l s  were measured 

diagram showing the  operation of t h e  de tec tor  and assoc ia ted  
e l ec t ron ic s .  

"normal" and "al ternate" .  
gamma-ray and background data  are co l l ec t ed  a f t e r  every neutron 
pulse ,  while  i n  t h e  "al ternate"  mode capture  gamma-ray data 
and background data a r e  co l lec ted  a l t e r n a t e l y  a f t e r  successive 
neutron pulses  , 

monitor during t h e  3 

This method of  gat ing the analyzer  with the  Tektronix 547 

This method introduced 

The S e t  t o  0 input i s  used t o  route  the  s i g n a l  

Delay and sample times were then achieved using known 

using an I t  events per  u n i t  time" meter,  Figure 1 2  is a block 

The analyzer  sequence switch a f fo rds  two modes of  operat ion:  
I n  t h e  "normalt' mode both capture  
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The ga t ing  f o r  t h e  "normal" mode r e s u l t s  i n  trace B of 
Figure 13 being f e d  i n t o  the  analyzer coincidence input .  As 
shown by t h i s  trace, t h e  analyzer is  gated on f o r  a durat ion 
Dd a f te r  a delay Ds after t h e  beginning of each neutron pulse. 
The capture  gama-ray da ta  co l l ec t ed  during t h i s  i n t e r v a l  are 
s t o r e d  i n  t h e  f irst  h a l f  of t h e  analyzer  memory. Then ( s t i l l  
a f te r  t h e  same neutron pulse) t h e  analyzer  is gated on again 
f o r  a durat ion Dd after a delay Db (Db > Ds) after t h e  beginning 
of  t he  neutron pulse. The background data co l l ec t ed  during 
t h i s  i n t e r v a l  are s to red  i n  t h e  second h a l f  o f  t h e  analyzer  
memory. Thus, i n  t h i s  mode capture  gamma-ray and background 
d a t a  are co l l ec t ed  af ter  every neutron pu l se  and s to red  i n  
d i f f e r e n t  halves of t h e  analyzer memory. 

of Figure 1 3  being fed i n t o  t h e  coincidence input  of t h e  
analyzer.  A s  shown by t h i s  t r a c e ,  t he  analyzer  is gated on 
f o r  a durat ion Dd a f te r  a delay Ds after t h e  beginning of t h e  
f i r s t  neutron pulse ,  and the  capture  g a m - r a y  data a r e  s to red  
i n  t h e  f i rs t  h a l f  of t h e  analyzer memory. Af te r  t h e  next 
neutron pulse,  t h e  analyzer  i s  gated on f o r  a durat ion Dd 
a f t e r  a delay Db (Db > D,), and the  background d a t a  a r e  s to red  
i n  t h e  second h a l f  o f  the  analyzer memory. The next neutron 
pu l se  i n i t i a t e s  t h e  cyc le  again. Thus, cap ture  gamma-ray 
d a t a  and background data a r e  c o l l e c t e d  a f t e r  t h e  appropr ia te  
delays after a l t e r n a t e  neutron pulses and s t o r e d  i n  d i f f e r e n t  
halves of  t h e  analyzer  memory. 

t h e  "a l te rna te"  mode, it was  used i n  the parametric study. 
The "a l te rna te"  mode would be used only when the  t i m e  i n t e r v a l  
between samples [Db  - (Ds + Dd)] is  s h o r t e r  than the  t i m e  
necessary f o r  t h e  analyzer  t o  accept  and s t o r e  a pulse  
(- 150 psec). 

The ga t ing  f o r  t h e  "a l te rna te"  mode r e s u l t s  i n  trace C 

Since t h e  "normal" mode c o l l e c t s  data twice as fast  as 
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Experimental Sample 

The 60 in .  x 60 in .  x 30 in .  sand sample described i n  
Chapter 111 w a s  used f o r  t h e  capture  gamma-ray measurements. 
Thermal neutron capture  gamma-ray s p e c t r a  from a sample of t h e  
sand (Figure 14) and from a sample of  pure s i l i c o n  (Figure 15) 
were obtained using thermal neutrons from t h e  I I T R I  Research 
Reactor ( f o r  de t a i l s  of t h e  procedure, see Reference 7).  
Since only s i l i c o n  capture  gama-ray l i n e s  are observed i n  
Figure 14, it can be concluded t h a t  t h e  sand contains  no 
s i g n i f i c a n t  amounts of contaminants t h a t  produce i n t e r f e r i n g  
capture  gamma-ray l i n e s .  

The f i rs t  series of capture  gamma-ray s p e c t r a  from t h e  
large sand sample taken using t h e  pulsed 14-MeV source of 
neutrons r e su l t ed  i n  the  s i l i c o n  capture  gamma rays being 
nea r ly  obscured by t h e  016(n,p)N16 f a s t  a c t i v a t i o n  gamma rays.  
Under these  condi t ions,  the s i l i c o n  capture  gamma rays are 
d i f f i c u l t  t o  use f o r  t h e  study of t h e  effects of various 
parameters on t h e  d e t e c t a b i l i t y  of t h e  capture  gamma rays.  
Therefore, i ron  ( i n  t h e  form o f  1/8- in . - thick plates)  w a s  
a d d e d  t o  t h e  sand sample  t o  f a c i l i t a t e  t h e  parametric study. 
The i r o n  capture  gamma-ray spectrum (see Figure 16)  contains  a 
s t rong  7,64-MeV gamma ray which, being higher  in energy t h a n  

t h e  0 
a c t i v a t i o n .  
(iron-sand-1) contained 20 percent i ron ,  43 percent oxygen 
and 37 percent  s i l i c o n .  

To f a c i l i t a t e  t h e  detector-source geometry phase of t h e  
parametr ic  study, a second iron-sand matrix (iron-sand-2) was 
used. In  iron-sand-2, a uniform l a y e r  of i r o n  w a s  loca ted  5 c m  
below t h e  sur face  of t h e  sand. A t h i r d  iron-sand matrix 
(iron-sand-3) w a s  a l s o  used. This sample resembles iron-sand-1 
i n  i r o n  content  but d i f f e r s  s l i g h t l y  i n  t h e  placement of t h e  
i r o n  p l a t e s  w i t h  respec t  t o  t h e  source and t h e  s ides  of t h e  
sample container .  

1 6  (n,p)N1' gamma rays ,  is no t  obscured by t h e  oxygen 
The r e s u l t i n g  a c t i v e  volume of sample matrix 
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CHAPTER V 

PARAMETRIC STUDY RESULTS 

A number of  parameters a f f e c t  t h e  q u a l i t y  of t h e  capture  

Some of t h e s e  are the l eng th  of  t h e  sampling 
gamma-ray s p e c t r a  obtained using 14-MeV neutrons and a semi- 
i n f i n i t e  sample. 
period, t h e  neutron r e f l e c t o r  thickness  , t he  detector-source 
geometry, and t h e  neutron pulse rate.  The opt imizat ion of  
each o f  t hese  parameters w i l l  be discussed ind iv idua l ly .  

Length of Sampling Period 

Since t h e  i n t e n s i t y  of t h e  capture  g a m a  rays decreases 
as a funct ion of t i m e  after t h e  neutron pulse  whi le  the  i n t e n s i t y  
of t he  background is  e s s e n t i a l l y  constant  ( t h e  7.4-sec h a l f - l i f e  
of N 1 6  is long compared t o  the t i m e  between neutron pu l ses ) ,  
t h e  length  of t h e  sampling'period can be chosen t o  minimize 
t h e  f r a c t i o n a l  s t a t i s t i c a l  e r r o r  i n  t h e  observed s i g n a l  a f t e r  
background subt rac t ion .  The determination of t h i s  optimum 
sample durat ion i s  discussed i n  Appendix A. 

t h e  thermal neutron l i f e t i m e  i n  t h e  sample must be known. 
This w a s  determined experimentally by observing t h e  number 
of counts i n  t h e  7.64-MeV Fe(n,y) peak as a funct ion of t i m e  
a f t e r  t h e  neutron pulse.  
and delays varying from 250 psec t o  1900 psec, t he  thermal 
neutron l i f e t i m e  was found to  be 282 ksec i n  iron-sand-1 sample 
matrix and 155 psec i n  iron-sand-3 sample matrix. The d i f f e rence  
i n  t h e  thermal neutron l ifetimes i n  t h e  two samples w a s  caused 
by t h e  d i f f e r e n t  placements of t h e  i ron  p l a t e s  i n  t h e  sand. 

be known t o  determine t h e  optimum length  of t h e  sampling period. 
No i s  t h e  s i g n a l  count r a t e  a t  t h e  beginning of  t h e  sampling 
per iod,  and B i s  t h e  background count ra te  (assumed t o  be 

To determine t h e  optimum length  of t h e  sampling period, 

With a sample dura t ion  of  50 Wsec 

The value of t he  s ignal- to-noise  r a t i o ,  No/B, must a l s o  
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cons tan t ) .  
approximately two f o r  t h e  7.64-MeV Fe(n,y) l i n e  a t  a pulse  rate 
of  500 pps. 
(1) No, t h e  number of counts i n  t h e  7.64-MeV Fe(n,y) peak 
recorded i n  an i n t e r v a l  200 ksec long, delayed 250 psec a f te r  
t h e  neutron pulse ,  and (2) B, t h e  background recorded i n  an  
i n t e r v a l  200 ksec long, delayed 1700 bsec af ter  t h e  neutron 
pulse.  I f  t h e  neutron output per pu lse  remains the  s a m e ,  
it is  assumed t h a t  t h e  background a t  a 1000 pps pulse  rate 
w i l l  be t w i c e  t h a t  observed with a 500 pps ra te ,  while t h e  
capture  gama  rays per pulse remain constant  ( s ee  Appendix A) .  
Therefore, a s ignal- to-noise  r a t i o  of un i ty  is  assumed f o r  
t h e  7.64-MeV (n,y) l i n e  w i t h  a pulse  ra te  of  1000 pps. 

With t h e  method of Appendix A and t h e  above values f o r  
T and No/B, it w a s  found t h a t ,  al though an optimum length  of 
t h e  sampling period e x i s t s ,  t h e  f r a c t i o n a l  error i n  the  s i g n a l  
is q u i t e  i n s e n s i t i v e  t o  t h e  length  of t h e  period. 
found t o  be t r u e  f o r  both values of  t h e  thermal neutron 
l i f e t i m e  (282 psec and 155 psec) and f o r  both pu l se  rates 
(500 pps and 1000 pps) . 

To f ac i l i t a t e  a direct  comparison between t h e  two pulse  
rates f o r  subsequent parametric measurements, i t  w a s  decided t o  
employ a common sample duration. 
procedure is  j u s t i f i e d  when one considers  t h a t  t h e  previous 
r e s u l t s  showed t h a t  the  s a m p l e  durat ion is not  c r i t i c a l .  The 
only c o n s t r a i n t  on t h e  sample durat ion i s  t h a t  i t  must be 
s h o r t e r  than t h e  maximum length which can be used a t  t h e  1000 pps 
pu l se  rate. I f  a background sample is a l s o  taken, t h e  necessary 
250-ksec delay a f t e r  the  neutron pulse  and t h e  analyzer  dead 
t i m e  means t h a t  t h e  maximum leng th  of  t h e  sampling period is 
250 Wsec. For convenience, t h e  200-psec sample durat ion,  which 
w a s  a p reca l ib ra t ed  s e t t i n g  on t h e  osc i l loscope ,  w a s  used when 
t h e  analyzer  w a s  gated by t h e  Tektronix 547 osci l loscope.  When 
t h e  analyzer  sequence switch w a s  used f o r  t h e  ga t ing ,  a sample 
dura t ion  of 230 Vsec w a s  used because of t h e  a v a i l a b i l i t y  of a 
s t a b l e  capac i to r  giving t h i s  durat ion.  

The s ignal- to-noise  r a t i o  w a s  measured t o  be 

This measurement w a s  performed by obtaining 

This w a s  

It i s  clear t h a t  t h i s  
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Neutron Reflector  Thickness 

To determine the  optimum thickness  of t h e  neutron 
r e f l e c t o r  and the  e f f e c t s  of  placing a low-Z ma te r i a l  
between t h e  neutron source and t h e  sample, capture  gamma-ray 
spectra were obtained using several  thicknesses  of pa ra f f in  
loca ted  both above and below t h e  neutron source. For each 
case, the  r e l a t i v e  i n t e n s i t y  of t h e  i ron  capture  gamma rays 
and t h e  r e l a t i v e  s p e c t r a l  qua l i t y  o f  the  spectrum were 
ca lcu la ted .  The r e l a t i v e  in t ens i ty  of t he  i ron  capture  gamma 
rays w a s  determined by in tegra t ing  the  number of counts under 
the  7.64-MeV Fe(n,y) peak per u n i t  14-MeV neutron output .  
The r e l a t i v e  s p e c t r a l  qua l i t y  w a s  obtained by taking t h e  r a t i o  
of  t h e  number of counts under t h e  7.64-MeV Fe(n,y) peak t o  t h e  
number of  counts under the  6.13-MeV O(n,p) peak. The r e l a t i v e  
spectral qua l i t y ,  therefore ,  is  a measure of t h e  dominance 
of  t h e  capture  gamma rays over t h e  oxygen a c t i v a t i o n  gamma 
rays.  A low value f o r  the  spec t r a l  q u a l i t y  ind ica tes  t h a t  
t h e  oxygen a c t i v a t i o n  gama  rays dominate the  spectrum. 

i n  Table 6. 
source increases  the  Fe(n,y) i n t e n s i t y  by more than a f ac to r  
of  two and t h e  s p e c t r a l  q u a l i t y  by about 50 percent over t he  
case  with no pa ra f f in  above the source. I f  8 cm of paraf f in  
is  located above the  source, t he  Fe(n,y) i n t e n s i t y  is  increased 
by about a f ac to r  of four and t h e  s p e c t r a l  q u a l t i y  by about a 
f a c t o r  of two over the  case with no paraf f in .  
obtained using 0,  2, 4, and 8 cm of pa ra f f in  above t h e  source 
a r e  shown i n  Figures 1 7  t o  20. 

The r e s u l t s  of t he  measurements made with pa ra f f in  
between the  source and sample (Table 7) i nd ica t e  t h a t  t h e  
Fe(n,y) i n t e n s i t y  and spec t r a l  q u a l i t y  show only a s l i g h t  
increase  when pa ra f f in  is  placed between the  neutron source 
and t h e  sample. 
and t h e  sample is only s l i g h t l y  bene f i c i a l  t o  the  capture  

The r e s u l t s  of t he  r e f l e c t o r  determination are contained 
They show t h a t  4 cm of  pa ra f f in  located above t h e  

The spec t r a  

Since a moderator between t h e  neutron source 
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Table 6 

THE EFFECT OF A'REFLECTOR ABOVE THE 
NEUTRON SOURCE ON SPECTRAL RESPONSE 

Thickness of  Relative S p e c t r a l  R e l a t i v e  I n t e n s i t y  
P a r a f f i n  (cm) Qual i ty  Fe(n,y) 

~ 

30 

50 

70 

90 

120 
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gamma-ray experiment and i s  q u i t e  detr imental  t o  t h e  i n e l a s t i c  
s c a t t e r i n g  experiment, i t w i l l  no t  be used. However, a neutron 
r e f l e c t o r  loca ted  above the source grea-tly increases  t h e  
s e n s i t i v i t y  of t h e  capture  gamma-ray technique and has been 
incorporated i n t o  t h e  experiment. 

Detector-Source Geometry 

Two types of detector-source geometries have been 
considered, hor izonta l  and v e r t i c a l .  I n  t h e  ho r i zon ta l  
configurat ion,  both t h e  source and de tec to r  l i e  i n  a ho r i zon ta l  
plane loca ted  a given dis tance above t h e  su r face  of t h e  sample. 
In  t h e  v e r t i c a l  configurat ion,  t h e  source and de tec to r  l i e  i n .  
a v e r t i c a l  plane wi th  t h e  detector  located above t h e  source. 
Both configurat ions are shown i n  Figure 21. 

geometries, t h e  iron-sand-2 sample matrix w a s  used. The 
measurements were made wi th  a 8-cm-thick p a r a f f i n  reflector 
loca ted  above t h e  neutron source and t h e  source loca ted  5 c m  
above t h e  su r face  of t h e  sample. For each geometry, two d i f f e r -  
e n t  source- to-crys ta l  dis tances  were used, 37 cm and 52 c m  
w i t h  t h e  ho r i zon ta l  geometry, and 32 c m  and 47 c m  wi th  t h e  

ray  and background) obtained are shown i n  Figures 22 t o  25. 
For each geometry and source- to-crys ta l  d i s t ance ,  t h e  

r e l a t i v e  Fe(n,y) i n t e n s i t y  and t h e  s p e c t r a l  q u a l i t y  index were 
measured. The re la t ive Fe(n,y) i n t e n s i t y  w a s  obtained by 
i n t e g r a t i n g  t h e  number of counts under the  7.64-MeV Fe(n,y) 
peak a f t e r  background subt rac t ion  and then normalizing t o  a 
given 14-MeV output.  The spectral q u a l i t y  index denotes t h e  
r a t i o  of  t h e  Fe(n,y) t o  O(n,p) gama-ray i n t e n s i t i e s .  It is 
obtained by taking t h e  ratio of t h e  counts under t h e  7.64-MeV 
Fe(n,y) peak af ter  background sub t r ac t ion  t o  t h e  counts under 
t h e  6.13-MeV O(n,p) peak i n  t h e  background (long delayed 
spectrum), The r e s u l t s  l i s t e d  i n  Table 8 i n d i c a t e  t h a t  t h e  

For experimental comparison between t h e  two types of  

v e r i i c r i i  geometry. T)l-+- i i u L a  u A  - F  +I.- b L a L  upkrbAU n n - m + r r ~  /hn+h ,yv---  ~_ap+_ijrp gamma 
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hor izonta l  geometry is  superior  t o  the  v e r t i c a l  geometry, 
and t h a t  decreasing the  source- to-detector  d i s tance  increases  
both the  Fe(n,y) i n t e n s i t y  and t h e  s p e c t r a l  q u a l i t y  index. 
Theoret ical  values of  the  s p e c t r a l  q u a l i t y  index, ca lcu la ted  
according t o  the  method of Appendix B, are a l s o  l i s t e d  i n  
Table 8; they give the  same r e s u l t s  as the  experimental 
measurements . 

For t h e  case of  horizontal  geometry with a source-to- 
de tec tor  d i s tance  of 52 cm, a 4- in . - thick lead sh ie ld  w a s  
placed between the  source and t h e  shadow sh ie ld .  The l e a d  
s h i e l d s  t h e  de tec tor  from the region of  t he  sample d i r e c t l y  
below t h e  source.  
is  shown i n  Figure 26; t h e  r e l a t i v e  Fe(n,y) i n t e n s i t y  and 
s p e c t r a l  q u a l i t y  index a r e  l i s t e d  i n  Table 8. 
of the  r e s u l t s  of t he  52-cm hor izonta l  configurat ion wi th  and 
without t h e  4-in. lead sh ie ld  shows t h a t  the  addi t ion  of the  
l e a d  s h i e l d  tends t o  decrease only s l i g h t l y  t h e  Fe(n,y) 
i n t e n s i t y ,  while  increasing t h e  value of  t h e  s p e c t r a l  q u a l i t y  
index. This suggests t h a t  t h e  a c t i v e  volume f o r  the production 
o f  de t ec t ab le  ac t iva t ion  gamma rays i s  located near t he  source,  
while  t he  a c t i v e  volume for production of de tec tab le  capture  
gamma rays i s  located close t o  t h e  detector .  This conclusion 
is cons i s t en t  with the  t h e o r e t i c a i  ca l cu la t ions  of Appendix B. 

The detector-shadow shield-neutron source conf igura t ion  
suggested a t  t h e  Sandia meeting w a s  a l s o  invest igated.  
is a hor izonta l  geometry configurat ion employing a 6-in.  
copper shadow s h i e l d  with a 2-in. gap between the  t a r g e t  and 
t h e  shadow s h i e l d  and a 1-in. gap between t h e  shadow s h i e l d  
and t h e  detector .  
both 4-cm and 8-cm neutron r e f l e c t o r s  were made on t h e  i ron-  
sand-3 sample matrix.  
Figures 27 and 28. A s  shown by the  Fe(n,y) i n t e n s i t y  and the  
s p e c t r a l  q u a l i t y  index f o r  these  configurat ions ( c f .  Table 7 ) ,  
t h e  27-cm base with a 8-cm neutron r e f l e c t o r  produced t h e  b e s t  
cap ture  gamma-ray spectrum. 

The spectrum obtained with t h i s  configurat ion 

A comparison 

This 

Measurements using t h i s  geometry with 

The s p e c t r a  obtained a r e  shown i n  
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Figure 26 

CAPTURE GA;*D.IA-IWY SPECTRUM OF IRON-SAND SANPLE OBTAINED USING 
4 i n .  OF LEAD BETWEEN TAKCET AND SHADOW SHIELD 
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Addition of Neutron Absorber t o  Reflector 

A r e f l e c t o r  loca ted  above t h e  neutron source is very 
b e n e f i c i a l  t o  t h e  capture  gamma-ray experiment, as shown by 
t h e  r e s u l t s  i n  Table 6. However, t h e  r e f l e c t o r  i s  apparent ly  
detr imental  t o  t h e  neutron die-away experiment(8) because 
thermal neutrons tend t o  leak out  of  t h e  r e f l e c t o r  f o r  extended 
periods of t i m e  a f te r  t h e  neutron pulse. 
thermal neutron leakage, 0.8 percent boron carb ide  w a s  added 
t o  t h e  4-cm r e f l e c t o r .  This amount of boron carb ide  increases  
t h e  thermal neutron capture c ross  s e c t i o n  of t h e  r e f l e c t o r  
by a f a c t o r  of  ten.  

iron-sand-3 sample matrix using t h e  27-cm hor izonta l  geometry 
and t h e  4-cm boronated paraf f in  r e f l e c t o r .  

. obtained is shown i n  Figure 29. Analysis of t h i s  spectrum 
ind ica t e s  t h a t  t he  r e l a t i v e  Fe(n,y) i n t e n s i t y  is 62 and t h e  
s p e c t r a l  q u a l i t y  index is  0.19. S ince  t h e  s a m e  geometry 
wi th  4 c m  of  normal paraf f in  produced a r e l a t i v e  Fe(n,y) 
i n t e n s i t y  of  140 and a s p e c t r a l  q u a l i t y  index of 0.48, .the 
add i t ion  of a s t rong  thermal neutron absorber t o  t h e  r e t l e c t o r  
i s  c l e a r l y  de t r imenta l  t o  t h e  capture  gamma experiment and is  

To- decrease t h i s  

Capture gamma-ray measurements were taken wi th  t h e  

The spectrum 

i-ougi-Liy eq-ui-vaAe-iit tzl c t c .  -....<em: 6- 
L L L G  U L I I I U ~ A U L I  of 2 reflectcr.  

Neutron Pulse R a t e  

The a n a l y s i s  performed i n  Appendix A i nd ica t e s  t h a t  t h e  
neutron pu l se  rate s t rongly affec-ts t h e  q u a l i t y  of t h e  capture  
gamma-ray d a t a .  
t o  t h e  neutron a c t i v a t i o n  gamma-ray count rate ( s p e c t r a l  
q u a l i t y  index) w a s  found t o  vary inverse ly  wi th  t h e  neutron 
pu l se  rate. To check t h i s  point  experimentally,  capture- 
gamma-ray measurements were performed with a 1000 pps pulse  
rate on t h e  iron-sand-3 sample matrix wi th  t h e  27-cm ho r i zon ta l  
geometry and a 4-cm paraf f in  r e f l e c t o r  above t h e  neutron source. 
The spectrum obtained is shown i n  Figure 30. For t h i s  spectrum, 

The r a t i o  o f  capture  gama-ray count rate 
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t h e  s p e c t r a l  q u a l i t y  indexwas found t o  be 0.14. Comparison 
of t h i s  r e s u l t  wi th  t h a t  obtained using t h e  s a m e  geometry 
and a 500 pps pulse rate (cf .  Table 8, Figure 27) ind ica ted  
t h e  s p e c t r a l  q u a l i t y  index decreased by almost a factor o f  
th ree .  
q u a l i t y  of the capture  gama-ray spectrum on the neutron pulse  rate. 

conclusion t h a t  t h e  neutrons from t h e  source were not  being 
e f f i c i e n t l y  u t i l i z e d .  About twice as many counts were 
recorded i n  t h e  1000 pps spectrum (Figure 30) than i n  t h e  
500 pps spectrum (Figure 27) ,  while  fewer neutrons were used 
i n  obta in ing  t h e  1000 pps spectrum. Also, t h e  number of  counts 
recorded i n  both of  t hese  spec t r a  i s  about equal t o  t h e  number 
of  neutron pulses  t h a t  occurred i n  t h e  course of ob ta in ing  t h e  
data.  Thus, it appears t ha t  t h e  number of counts recorded 
is  proport ional  t o  t h e  number of neutron pulses  r a t h e r  than 
t o  t h e  number of  neutrons used.  This appears t o  r e s u l t  from 
t h e  fact  t h a t ,  i n  general ,  t h e  pulse  height  analyzer w i l l  no t  
handle t h e  s i g n a l  from more than one o r  two gamma rays  per 
sampling period, as t h e  duration of  each sampling period is  
only 230 psec and t h e  PHA may r equ i r e  as much as 160 psec t o  
record a pulse. Therefore, a d d i t i o n a l  pulses a r r i v i n g  during 
t h e  sampling period w i l l  be r e j e c t e d  by t h e  PHA and w i l l  not  
be recorded. To use  t h e  neutron output from t h e  source e f f i -  
c i e n t l y ,  t h e  number of  neutrons per  pulse  must be reduced t o  
t h e  po in t  where t h e  number o f  counts recorded is  propor t iona l  
t o  t h e  number of neutrons used. 

This r e s u l t  tends t o  support  t he  dependence of  t h e  s p e c t r a l  

Comparing Figures 27 and 30 leads t o  t h e  a d d i t i o n a l  

Summary 

It w a s  determined tha t  a good q u a l i t y  thermal neutron 

However, 
cap ture  gamma-ray spectrum (Figure 28) can be obtained from a 
bulk sample using a pulsed 1 4 - M e V  neutron source. 
t o  ob ta in  such a spectrum, t h e  opt imizat ion of  s eve ra l  
parameters had t o  be considered: t h e  length  of sampling 

67 



e -  
t 
1 
8 
t 
B 
8 
I 
I 
1 
I 
I 
0 
I 
1 
8 
t 
I 
1 

period,  t he  neutron r e f l e c t o r  thickness ,  t h e  detector-source 
geometry, and t h e  neutron pulse r a t e .  

al though an optimum sampling period e x i s t s  ( f o r  a given sample 
and neutron pulse  r a t e ) ,  the q u a l i t y  of t h e  capture  gamma-ray 
spectrum is i n s e n s i t i v e  t o  the length  of t h e  sampling period. 
Therefore, a sampling period of 250 psec durat ion,  which could 
be used successfu l ly  with neutron pulse  rates between 500 pps 
and 1000 pps, was se lec ted .  

neutron f lux  d i s t r i b u t i o n s  in the  sample and t h e  r e s u l t s  of 
capture  gamma-ray measurements i nd ica t e  t h a t  a neutron r e f l e c t o r  
loca ted  above the  source is  very b e n e f i c i a l  t o  capture  gamma-ray 
measurements. However, t h i s  r e f l e c t o r  i s  detr imental  t o  t h e  
die-away experiment. The addi t ion of 0.8 percent boron carbide 
t o  t h e  r e f l e c t o r  t o  make the r e f l e c t o r  more near ly  compatible 
wi th  t h e  die-away experiment r e su l t ed  i n  t h e  n u l l i f i c a t i o n  of 
t h e  bene f i t s  of using the  r e f l ec to r .  

Horizontal  and v e r t i c a l  detector-source geometries were 
inves t iga ted .  It w a s  determined both t h e o r e t i c a l l y  and 
experimentally t h a t  horizontal  geometry wi th  a s h o r t  source-to- 
de t ec to r  d i s tance  is  the  best .  It w a s  a l s o  found t h a t  the  
a c t i v e  volume f o r  t he  production of de tec tab le  ac t iva t ion  
gamma rays is located near the  source,  while  t he  a c t i v e  volume 
f o r  production of detectable  capture  gamma rays is located 
nearer  t h e  de tec tor .  

should give b e t t e r  c a p t u r e  gamma-ray spec t r a  than the  1OOO'pps 
pulse  r a t e .  Experimentation supported t h i s  predict ion.  

From t h e o r e t i c a l  ca lcu la t ions  it w a s  determined t h a t ,  

The r e s u l t s  of both predicted and experimental thermal 

Theoret ical  r e s u l t s  indicated t h a t  t h e  500 pps pulse  rate 



CHAPTER V I  

AREAS REQUIRING FURTHER STUDY 

While t h e  present  study has es tab l i shed  t h e  f e a s i b i l i t y  
of  applying t h e  capture  gamma-ray technique t o  the  ana lys i s  
of  l a r g e  samples using a 14-MeV pulsed neutron source,  t h e r e  
remain seve ra l  areas re la ted  t o  the  opt imizat ion and expected 
s e n s i t i v i t y  of t he  capture  gamma-ray experiment , espec ia l ly  
i n  conjunction with t h e  other  experiments, t h a t  w i l l  r equi re  
f u r t h e r  inves t iga t ion  . 

The s tud ie s  discussed i n  t h e  preceding sec t ions  were 
conducted using a nonhomogeneous iron-sand sample. While 
t h i s  sample w a s  probably adequate fo r  determing the  e f f e c t  
t h a t  s eve ra l  of  t he  experimental parameters may have on the  
recorded spectrum, it i s  impossible t o  determine the  a b i l i t y  
of  t h e  technique t o  measure t h e  r e l a t i v e  concentrat ions of 
elements o ther  than i ron,  s i l i c o n ,  and oxygen with t h i s  sample. 
Large samples of severa l  rock types (such as g r a n i t e  and b a s a l t )  
w i l l  be required t o  provide a means t o  determine experimentally 
the  s e n s i t i v i t y  of the  capture  experiment ( cyc l i c  a c t i v a t i o n  
can a l s o  be s tudied) .  

by t h e  Van d e  Graaff during each pulse  w a s  much l a r g e r  than 
optimum f o r  t h e  capture  gamma-ray experiment. This r e su l t ed  
i n  t h e  i n e f f i c i e n t  use of the  neutrons as wel l  as possible  
degradation of t h e  capture  gamma-ray spectrum. A s  discussed 
i n  Appendix A,  t h e  gamma-ray de tec tor  requi res  about 200 wsec 
af ter  a neutron burs t  t o  recover and opera te  properly.  It 
is l i k e l y  t h a t j  i f  t he  number of  neutrons per  pulse  i s  reduced 
s u b s t a n t i a l l y ,  t h i s  overloading of t he  de tec tor  system could 
be g r e a t l y  reduced, i f  no t  e l iminated e n t i r e l y .  Experimentation 
is required t o  e s t a b l i s h  t h e  optimum number of neutrons t h a t  
should be produced p e r  neutron b u r s t  and the  e f f e c t  t h a t  t h i s  

In  the  preceding s tud ie s ,  t he  number of neutrons produced 
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change would have on the  r e su l t i ng  capture  gamma-ray spectrum, 
(Present ly  it is expected tha t  about 1 x lo3  neutrons per 
pulse  would be acceptable.)  

pa ra f f in ,  placed above t h e  neutron source has been found t o  
increase g r e a t l y  the  s e n s i t i v i t y  of t h e  capture  gama-ray 
experiment. This i s  accomplished by increasing t h e  low-energy 
neutron f l u x  near t h e  surface without per turbing t h e  f a s t  
neutron f l u x  (> 11 MeV). Such a r e f l e c t o r  apparent ly  does 
not  i n t e r f e r e  with e i t h e r  the neutron i n e l a s t i c  s c a t t e r  exper- 
iment o r  the a c t i v a t i o n  analysis  experiment. However, the  
presence of  low-Z mater ia l  i n  the  v i c i n i t y  of  t h e  t a r g e t  
would make the  measurement of t he  epithermal die-away i n  t h e  
sample very d i f f i c u l t ,  i f  not impossible. (8) This in t e r f e rence  
w i l l  r equi re  more s tudy by both p a r t i c i p a t i n g  inves t iga tors  
t o  determine methods by which t h i s  problem can be circumvented, 
A t  present ,  the  pos i t ion  which IITRI assumes i s  t h a t ,  while  
t h e  presence of t h i s  r e f l e c t o r  i s  not  absolu te ly  e s s e n t i a l  t o  
t h e  capture  gamma-ray experiment, it is  highly des i rab le .  

There a r e  a number of o the r  experimental parameters t h a t  
can a f f e c t  the  s e n s i t i v i t y  of  t h e  capture  gamma-ray experiment. 
The inves t iga to r s  concerned with the  individual  experiments 
and t h e  engineers converned w i t h  t h e  hardware f o r  t he  combined 
experiment must come t o  an agreement on severa l  c r i t i c a l  items 
before a meaningful estimate of t he  s e n s i t i v i t y  ( i n  t h e  combined 
experiment configurat ion)  can be made fo r  any of  t h e  individual  
experiments. 

It is f e l t  t h a t  resolut ion of  t h e  following parameters 
is a necessary p re requ i s i t e  t o  f u r t h e r  experimental inves t iga t ion  
regarding t o  t a l  comb i n  ed experiment capab il i t y  and s ens it i v i  t y . 

The use of  a neutron r e f l e c t i n g  material, such as 

1. Experimental Configuration: 

a. 
b, 

Distance between de tec tor  and neutron source; 
Height of  source and de tec tor  above sample sur face ;  
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c. Amounts, types,  and posi t ions of  neutron 

d. Amounts, types,  and configurat ions of support  
sh ie ld ing  (thermal and f a s t )  ; 

s t ruc tu res  required f o r  i n t eg ra t ion  of t h e  
seve ra l  experiments. 

2. Hardware Charac te r i s t ics :  

a, Neutron generator - pulses  per second, 
neutrons per pulse ,  pulse  durat ion,  pulse  
timing s ignal  ; 

b. Pulse height  analyzer  - dead time, pulse  
rout ing c a p a b i l i t i e s ,  s t a b i l i t y ;  

C. Detector reso lu t ion ;  
d. Amplifier and preamplif ier  - overload 

c h a r a c t e r i s t i c s ,  recovery t i m e ,  s t a b i l i t y .  

3. Data Collection: 

a. 

b,  Number of neutrons ava i l ab le  f o r  each 

Time-sharing f e a s i b i l i t y  of  t h e  pulse  he ight  
analyzer ; 

experiment 

I f  agreement concerning these  experimental parameters is 
i-eac'ned and the s i u d i e s  ment iuned  abuve are completed, it i s  
f e l t  t h a t  t he  s e n s i t i v i t y  of the capture  gamma-ray technique 
can be determined and the f e a s i b i l i t y  of t he  combined neutron 
experiment can be establ ished with confidence. 
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APPENDIX A 

OPTIMUM SAMPLING PERIOD 

When using a pulsed source of neutrons,  t he  i n t e n s i t y  of  
t he  capture  gamma rays emitted from a sample w i l l  decrease as 
a funct ion of t i m e  a f t e r  the neutron pulse ,  The rate of  t h i s  
decrease i n  i n t e n s i t y  depends on the  thermal neutron l i f e t i m e  
i n  t h e  sample. However, the i n t e n s i t y  of  t he  na tu ra l  background 
w i l l  remain constant  w i t h  t i m e .  Also, i f  t h e  time between 
neutron pulses  i s  s h o r t  compared t o  the  h a l f - l i f e  of  any 
radionucl ide produced by ac t iva t ion ,  t h i s  induced r a d i o a c t i v i t y  
w i l l  quickly reach a s t a t e  of equi l ibr ium and w i l l  t h e r e a f t e r  
remain approximately constant . This is  t h e  case encountered 
when using a pulsed 14-MeV neutron source fo r  capture  gamma-ray 
ana lys i s  of  a geological  sample, i .e.,  t he  background is constant  
wi th  time s i n c e  it is  due pr imari ly  t o  t h e  decay of N 1 6  (7.35 sec 
h a l f - l i f e ) .  Therefore,  i t  should be poss ib le  t o  optimize the 
durat ion of the  sampling period so  t h a t  t he  f r a c t i o n a l  e r r o r  
i n  t h e  observed capture  gamma-ray s i g n a l  i s  minimum. 
de r iva t ion  of  an expression f o r  t h i s  optimum sampling period 
and a discussion of i t s  appl ica t ion  t o  t h e  experimental cases  
fc?llc?w. 

t beginning a t  a predetermined t i m e  a f t e r  t h e  neutron pulse  
( t h e  beginning of the  in t e rva l  being determined by t h e  time 
required t o  l e t  t h e  detector  recover from the  neutron pulse) .  
Then the  counts observed during t h e  sampling period w i l l  be 

The 

Assume t h a t  the  analyzer i s  gated on f o r  a t i m e  i n t e r v a l  

C = N T(l-e-t’T) + B t ,  
0 (A-1) 

where No i s  the  s i g n a l  count rate a t  t i m e  zero,  B i s  the  
background count rate ( i n  the same energy region as the  s igna l )  
which i s  assumed t o  be constant ,  and T is the  mean l i f e t i m e  of 

A - 1  
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t h e  thermal neutrons i n  the sample. 
is 

The observed s igna l ,  S, 

(A-2) 

The e r r o r  i n  S i s  (C + B t )  1'2 and t h e  f r a c t i o n a l  e r r o r  i n  S 
is  (C + Bt)f /2/S.  It can be shown t h a t  t he  f r a c t i o n a l  e r r o r  
i n  S is  a minimum when the following equation is satisfied: 

(A-3) 

The minimization of t h e  f r ac t iona l  e r r o r  i n  S is  used as the  
c r i t e r i o n  fo r  t he  optimization of t h e  counting period. 

The optimum sampling period, t, can be determined as a 
function. of t h e  s ignal- to-noise  r a t i o ,  No/B. 
consider  t he  two cases where T = 282 psec and T = 155 psec. 
The r e s u l t s ,  given i n  Figure A-1, show t h a t  No/B is a f i n i t e  
p o s i t i v e  number only fo r  a s m a l l  range of  sample per iods.  
Therefore,  t he  minimization of  t h e  f r a c t i o n a l  e r r o r  f o r  a l l  
poss ib l e  s ignal- to-noise  r a t i o s  can be accomplished only within 
t h i s  s m a l l  range of  sample periods.  

experimentally:  (a) z = 282 wsec, 500 pps pulse  rate; 
(b) z = 155 psec, 500 pps pulse rate;  (c)  z = 282 psec, 1000 pps 
pulse  r a t e ;  (d) z = 155 psec, 1000 pps pulse  r a t e ,  
to-noise  r a t i o ,  No/B, w a s  measured t o  be approximately two 
f o r  cases  (a) and (b) (500 pps pulse  r a t e ) .  
obtaining the  r a t i o  of  t h e  number of  counts i n  the  7.64 MeV 
Fe(n,y) peak during t h e  period 250 t o  300 psec a f t e r  t he  
neutron pulse  t o  the number of counts i n  the  same energy 
region during the  period 1900 t o  1950 psec a f t e r  t h e  neutron 
pulse  . 
neutron source,  t h e  capture gamma ray count rate per second, 

As examples, 

Consider the  four cases wnicn were invescigaced 

The s igna l -  

This w a s  done by 

I n  the  capture  gamma-ray experiment using a pulsed 14-MeV 
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Ry, w i l l  be 

Ry = K Y n f ,  (A-4) 

where K 
f i s  t h e  pulse  rate. 
from t h e  decay of  N 1 6 ,  w i l l  be  

is a constant ,  n i s  t h e  neutron output per pulse ,  and 
Rb, the  background count rate per second 

Y 

where Kb is  a constant  and 
f l u x  seen by the  sample during severa l  N 1 6  h a l f - l i f e s .  
CP a n f ,  

i s  the  average 14-MeV neutron 
Since 

' 2  Rb = $ nf  , (A-6) 

1 

where Kb is  another  constant.  
of  t h e  pulse  ra te  ( f o r  a constant number of neutrons per  
pu l se ) ,  as both the  sampling rate and the  N 1 6  l e v e l  are 
proport ional  t o  the  pulse  r e p i t i t i o n  r a t e .  
r a t i o  w i l l  be,  therefore ,  

Thus, Rb var ies  with the  square 

The s ignal- to-noise  

(A-7) 

1 

where K = KY/%. 
r a t i o  is  inverse ly  proport ional  t o  t h e  pulse  rate and i s  
independent of  t h e  number of neutrons per  pulse.  
( c )  and (d) (1000 pps pulse r a t e ) ,  then, No/B w i l l  be assumed 
t o  be uni ty .  

optimum sampling times f o r  t he  four cases  were found t o  be 

Equation (A-7) shows t h a t  t h e  s ignal- to-noise  

For cases 

From equation (A-3) and the  above values f o r  No/B t he  
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Case Optimum t 

a 450 psec 
b 250 psec 
C 410 psec 
d 255 wec. 

Therefore,  t h e  optimum length of t h e  sampling period is s e n s i t i v e  
t o  t h e  thermal neutron l i fe t ime,  

neutron l i f e t i m e  i n  t h e  sample and t h e  s ignal- to-noise  r a t i o  
w i l l  be unknown, t h e  s e n s i t i v i t y  of t he  f r a c t i o n a l  errQr i n  
t h e  observed s igna l ,  S,  as a function of t and No/B must be 
determined, The r e s u l t s  f o r  t h e  four  cases are: 

Since i n  lunar  and planetary app l i ca t ions  both  t h e  thermal 

Case (a)  z = 282 Wsec, No/B = 2 (500 pps pulse  r a t e )  

t Fract ional  Error 
i n  S 

-112 
-112 
-112 

250 psec 86.9 B 
450 psec (Optimum) 81.7 B 
500 psec 81.8 B 

Case (b) T = 155 psec, No/B = 2 (500 pps pulse  rate) 

t Fract ional  Error 
i n  S 

200 psec 111 B- 112  

110 B- 112  
111 B- 112  

250 psec (Optimum) 
300 ksec 

Case ( e )  T = 282 psec, No/B = 1 (1000 pps pulse  r a t e )  

t Fract ional  Error 
i n  S 

155 B- 112  

149 B- 112  
150 B- 112  

250 psec 

500 psec 
410 psec (Optimum) 
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Case (d) T = 155 psec, No/B = 1 (1000 pps pulse  rate) 
t Fract ional  Error  

i n  S 

150 psec 207 B - l l 2  
225 psec (Optimum) 201 B- 1 / 2  
300 psec 204 B- 1 / 2  

Therefore,  although an optimum length  fo r  t he  sampling period 
e x i s t s ,  t he  f r a c t i o n a l  e r ro r  i n  S is  q u i t e  i n s e n s i t i v e  t o  it. 
Consider t he  s e n s i t i v i t y  of  the f r a c t i o n a l  e r r o r  i n  S as a 
funct ion of  No/B. For s ignal- to-noise  r a t i o s  of  0.15, 2, 
and 4.8 t h e  f r a c t i o n a l  e r rors  i n  S were ca lcu la ted  f o r  
t = 250 bsec and compared t o  t he  r e s u l t s  fo r  optimum t ( f o r  
each value of  No/B). The value T = 155 bsec w a s  assumed i n  
these  ca lcu la t ions .  The r e s u l t s  a r e  

N,/B 
~~ 

0.15 
2 
5 

Frac t iona l  Error  i n  S 
t = 250 psec O p t i m u m  t 

110 B- 1 / 2  110 B - l l 2  
1220 B- ''* 

55.6 B -'I2 

1210 B- 1 /2  

55.3 B -1/2 

These r e s u l t s  show t h a t ,  although t h e  f r a c t i o n a l  e r r o r  i n  S 
v a r i e s  s t rongly  with No/B, t he  sampling period i s  not  c r i t i c a l ,  
i.e., f o r  a given No/B t he  f r a c t i o n a l  e r ro r  i n  S is  q u i t e  
i n s e n s i t i v e  t o  the  sampling period. 

The above r e s u l t s  a r e  important,  s ince  i n  lunar  and 
planetary appl ica t ions  t h e  thermal neutron l i f e t i m e ,  T ,  and 
t h e  s ignal- to-noise  r a t i o ,  No/B, are unknown q u a n t i t i e s .  

t h e  length  of  the  sampling period w a s  i n i t i a l l y  chosen 
(when T = 282 psec) t o  be 200 psec. 
because it could be used conveniently with both the  500 pps 
and 1000 pps pulse  r a t e s .  Subsequently, when the  anlayzer  
sequence switch w a s  ava i lab le ,  the  length of the  sampling 
per iod w a s  changed t o  230 bsec. 

For experimental inves t iga t ions  of t he  iron-sand sample 

This durat ion w a s  selected 

This w a s  done because a capac i tor  
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y ie ld ing  t h i s  durat ion w a s  ava i lab le ,  while  none was ava i l ab le  
giving a durat ion of 250 wsec. 
sampling period has been shown not  t o  be c r i t i ca l  

four  cases  using t = 250 psec, Bo f o r  t he  background i n  t h e  
500 pps pulse  r a t e  cases ,  and 2Bo for t h e  background i n  t h e  
1000 pps pulse  rate cases ( f o r  a given sample and given 
neutron output  per pulse ,  the  background wi th  a 1000 pps 
pulse  r a t e  w i l l  be twice t h a t  fo r  a 500 pps pulse  rate), the  
following r e s u l t s  are obtained: 

However, the length of the  

I f  one compares the  f r a c t i o n a l  e r r o r  i n  S f o r  each of t he  

Cas e Fract ional  Error  
(with t = 250 wsec) i n  S 

86.9 Bo -112 
110 Bo -112 

143 Bo -112 
-112 110 Bo 

Thus, f o r  both values of  the thermal neutron l i f e t i m e  t h e  
f r a c t i o n a l  e r r o r  i n  S w i t h  t h e  500 pps pulse  rate is  about 
20 percent  lower than w i t h  t he  1000 pps pulse  rate. 

background cannot be obtained. 
In  t h e  ac tua l  experiment, a t r u e  measurement of t he  

Rather one g e t s  a s e t  of counts 

cS = N 0 T(l-e't/T) + B t  (A-8) 

during the counting period immediately following the  neutron 
pulse  and a second set  of  counts 

cb = No" e -r'T (e t IT-l)  + B t  (A -9 )  

during t h e  "background" counting period, where r i s  t h e  t i m e  
of the  end of the  "background" sampling period. 
can be measured independently by counting f o r  a s i g n i f i c a n t  

Unless B t  
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period of  t ime after the  end of a neutron pulse ,  one must 
work with the  quant i ty  

(A-10) 

which is related t o  t h e  d i s i r e d  s i g n a l  S by t h e  expression 

-r-t 
S'= S(1-e 7. (A-11) 

I f  t h e  f r a c t i o n a l  e r ror  i n  S' is  optimized i n  the  same 
manner as f o r  S i n  order  t o  see what gain can be made by 
background subt rac t ion ,  the following optimum sampling t i m e s  
f o r  our four  cases  are obtained 

C a s  e Optimum t 

a 440 psec 
b 250 psec 
C 240 psec 
d 200 psec 

- 

Here a delay time of 250 psec has been assumed so t h a t  r = 1750 
vsec f o r  cases  a and c and r = 750 vsec f o r  cases b and d. Not 
only a r e  these  optimum times c l o s e  t o  t h e  corresponding t i m e s  
f o r  t h e  case without background subt rac t ion ,  but  t h e  f r a c t i o n a l  
errors i n  S' are very close t o  those i n  S. 
as before holds with regard t o  pulse  rate var ia t ion .  
equation (A-7) it i s  seen t h a t  t h e  s p e c t r a l  q u a l i t y  index 
( t h e  r a t i o  of  t h e  capture  gamma-ray count rate t o  the  neutron 
a c t i v a t i o n  count rate) varies inverse ly  with the  pulse  r a t e .  
Hence, t he  s p e c t r a l  qua l i ty  index f o r  t h e  500 pps pulse  rate 
is  twice t h a t  f o r  t he  1000 pps pulse  rate. 

Conclusions t o  be drawn from the  above r e s u l t s  are: 
(1) i n  general ,  t he  f r ac t iona l  e r r o r  i n  t h e  observed s i g n a l  is  
unaffected by background subt rac t ion ;  (2) f o r  a given sample, 

The s a m e  s i t u a t i o n  
From 
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pulse  rate, and configuration, t h e  f r a c t i o n a l  e r r o r  i n  t h e  
observed s i g n a l  is r e l a t i v e l y  i n s e n s i t i v e  t o  t h e  length  of the  
counting period; (3) t h e  s p e c t r a l  q u a l i t y  index is higher and 
the  f r a c t i o n a l  e r r o r  i n  t h e  observed s i g n a l  is lower f o r  t he  
500 pps pulse r a t e .  Therefore, p r i o r  knowledge of  t h e  thermal 
neutron l i f e t i m e  i n  the  sample and t h e  s igna l - to-noise  r a t i o  
is  not  necessary f o r  t h e  determination of the  length  of t h e  
sampling period. 

A-9 



APPENDIX B 

ORIGIN OF THE THERMAL NEUTRON CAPTURE AND 
FAST NEUTRON INDUCER GAMMA RAYS 

The optimum experimental configurat ion used t o  d e t e c t  
and measure t h e  capture  gamma-rays is  dependent on t h e  locat ion 
of t h e  a c t i v e  volume i n  t h e  sample. (Active volume means 
t h e  volume from which t h e  bulk of t h e  g a m a  rays t h a t  reach 
t h e  de t ec to r  pos i t i on  or ig ina te . )  Therefore, a series of 
ca l cu la t ions  w a s  undertaken t o  determine t h e  a c t i v e  volume 
f o r  both t h e  capture  gamma rays and t h e  gamma r a d i a t i o n  which 
r e s u l t s  from f a s t  neutron a c t i v a t i o n  of t h e  sample. 

Procedure 

Once t h e  neutron f l u x  d i s t r i b u t i o n  is known, i t  i s  
poss ib l e  t o  estimate t h e  cont r ibu t ion ,  a i j ,  of each segment 
of t h e  sample t o  the  t o t a l  gamma-ray f l u x  observed a t  t h e  
de t ec to r  pos i t ion .  L e t  us  consider t h e  con t r ibu t ion  of one 
such segment. I f  w e  assume t h a t  t h e  neutron f l u x  is  cons tan t  
throughout t h e  segment and t h a t  t h e  dimensions of t h e  segment 
are  s m a l l  by comparison t o  the  d i s t ance  t o  t h e  de t ec to r  pos i t ion ,  

where 

t h e  ith index r e f e r s  t o  t h e  ith segment 
j = 1 r e f e r s  t o  thermal neutron capture  
j = 2 r e f e r s  t o  fast neutron a c t i v a t i o n  

= cont r ibu t ion  t o  t h e  gamma f l u x  a t  t h e  de t ec to r  
l oca t ion  due t o  t h e  ith segment (y's/cm sec) 'ij 2 

3 Vi = volume of t h e  ith segment ( c m  ) 

B - 1  



= neutron f l u x  i n  t h e  ith segment (n/cm 2 sec) 
f i j  
Ri 

Si = s t r a i g h t - l i n e  dis tance through t h e  sample from 

= d i s t ance  from t h e  cen t ro id  of t h e  segment t o  t h e  
de t ec to r  posi t ion (cm) 

t h e  ith segment t o  t h e  de t ec to r  pos i t i on  (cm) 
0 = appropr ia te  neutron c ross  s e c t i o n  (cm 2 /atom) j 

Z(E)= a t t enua t ion  c o e f f i c i e n t  f o r  amma rays of energy 
E i n  t h e  sample material (cm f / gm)  

K = i n t e n s i t y  of the gamma ray of  i n t e r e s t  
j 

( y ' s /n- i n t e rac t ion )  
p = dens i ty  of  t h e  sample (gm/cm 3 ) 

A = atomic weight of t h e  sample (gm/gm.mole) 
N = Avogadro's number (molecules/gm.mole) 
N 
0 

= number of atoms of i n t e r e s t  per sample molecule 
j 

(a toms /mo 1 ecul e) 

The a i j ' s  have been evaluated f o r  t h e  following s p e c i f i c  
cases: (1) neutron source loca ted  15  c m  above t h e  su r face  
wi th  t h e  de t ec to r  loca ted  15 cm above t h e  s u r f a c e  and 40 c m  
from t h e  neutron source, and (2) neutron source located 5 cm 
above t h e  su r face  wi th  t h e  de tec tor  loca ted  i n  seve ra l  
d i f f e r e n t  pos i t i ons .  In  a l l  cases, t h e  ca l cu la t ions  were 
performed f o r  thermal neutron capture  i n  s i l i c o n  and 14-MeV 
neutron a c t i v a t i o n  of oxygen. 

Source 15 c m  Above Surface 

On t h e  b a s i s  of t h e  thermal neutron f l u x  d i s t r i b u t i o n  
measured wi th  a 4-cm paraf f in  r e f l e c t o r  and reported i n  
Figure 9,  ca l cu la t ions  were performed t o  determine t h e  a c t i v e  
volume f o r  thermal neutron capture .  I n  a sand sample, only 
s i l i c o n  w i l l  cont r ibu te  t o  t h e  capture  gamma-ray spectrum, 
s i n c e  t h e  thermal capture  cross  s e c t i o n  f o r  oxygen is  extremely 
s m a l l .  The capture  gama-ray spectrum of s i l i c o n  is presented 
i n  Figure 15. 
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With 

c f =  1 
K -  
A =  

t he  following values f o r  t h e  parameters 

2 80 x 10 -27 c m  , 2 Z = 0.0316 c m  /gm a t  E = 4 MeV, 
A 0.5 y l in t e rac t ion ,  y = 1.74 gm/cm 3 , 

60 gm/gm*mole, N1 = 1 atom/molecule, 

equation (B-1) becomes 

0 - 2 )  -5 'ifi1 = 5.55 x 10 '2 exp 0.055 S d  . @i1 
R1 

The evaluat ion of  equation (B-2) f o r  each o f  more than one 
hundred segments leads t o  the r e s u l t  t h a t  87  percent  o f  t h e  
cap tu re  gamma rays t h a t  reach t h e  de t ec to r  pos i t i on  o r i g i n a t e  
i n  t h e  top  20 c m  of t h e  sample and 11 percent  o r i g i n a t e  i n  
t h e  l aye r  20 t o  40 cm below t h e  surface.  

Further  i n s i g h t  i n t o  where t h e  cap tu re  gamma rays  
o r i g i n a t e  may be gained by considering t h e  two Zones S and D, 
i nd ica t ed  i n  Figure B-1. Zone S includes t h a t  volume of 
sample enclosed by a cyl inder  centered d i r e c t l y  below t h e  
neutron source having a 20  cm rad ius  and a 20 c m  thickness .  
Zone D encloses a volume o f  sample i d e n t i c a l  t o  t h a t  of Zone S 
but centered 10 cm hor izonta l ly  from a poin t  d i r e c t l y  below 
t h e  de t ec to r  pos i t i on  and i n  t h e  d i r ec t ion  of t h e  neutron 
source.  Zone D i s  found t o  con t r ibu te  about 40 percent of t h e  
t o t a l  cap ture  gamma-ray f lux  while  Zone S con t r ibu te s  only 
22 percent.  Thus t h e  ac t ive  volume f o r  t h e  capture  gamma rays 
includes a r e l a t i v e l y  small area of t h e  sample d i r e c t l y  below 
t h e  de t ec to r  and a depth of  about 20 cm. 

The o r ig in  of t h e  14-MeV neutron-induced a c t i v i t y  is  t h e  
f a s t  neutron ac t iva t ion  of oxygen v i a  t h e  0l6(n,p)Nl6 r eac t ion ,  
This r eac t ion  is  po ten t i a l ly  a source of i n t e r f e rence  because 
of t h e  high energy gamma rays  assoc ia ted  wi th  it (6.13 MeV 
and 7.12 MeV). Therefore, it i s  of  i n t e r e s t  t o  determine t h e  
a c t i v e  volume associated with t h i s  r eac t ion .  
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While the  14-MeV neutron f l u x  d i s t r i b u t i o n  was not  
measured within the  sand sample, a f i r s t  order  approximation 
t o  t h e  d i s t r i b u t i o n  can be made by assuming the  func t iona l  
dependence 

where 

C = propor t iona l i ty  constant ,  

‘i = dis tance  from the neutron s o u r c e ‘ t o  the  point  of 
i n t e r e s t  (cm) , 

= s t r a i g h t - l i n e  dis tance through sand between the  

= 14-MeV neutron removal c o e f f i c i e n t  (cm-’). 

’i 

h 
point  of  o r i g i n  of t h e  neutron and t h e  point  of i n t e r e s t  

(cm)’ . 

The propor t iona l i ty  constant C can be evaluated using the  .. 

14-MeV r e s u l t  presented i n  Figure 9. 

5 2 

a t  r = 15 cm and 1 = 0. 
( f2)  = 2 .1  x 10 n/cm sec  

7 Therefore,  C = 4.7 x 10 . 
The 14-MeV’ neutron removal c o e f f i c i e n t  of the  sand 

sample w a s  measured using copper f o i l s  placed a t  severa l  
depths below t h e  surface of the  sand and w a s  found t o  be 
approximately 0.05 cm”. Equation (B-3) then becomes 

fi2 = 7 4.7 l o 7  exp 0.05 ji] . 
r 

(B-4) 

Equation (B-1) may now be wr i t ten  assuming 

2 C = 0.027 cm /gm at  6 MeV, 2 a2 = 42 x 10 -27 cm 
K = 0.68, p = 1.74 gm/cm, 
A = 60 gm/gm-mole, N~ = 2 atoms/molecule, 
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3 'i a i 2  = 3.73  X 10 2 2 -  exp E 0.05 ai  - 0.047 S d .  (B-5)  
r iRi  

The evaluat ion of equation (B-5) fo r  each segment r e s u l t s  
i n  the  conclusion that 83 percent of t h e  oxygen a c t i v a t i o n  
gamma rays t h a t  reach t h e  detector  pos i t ion  o r i g i n a t e  i n  t h e  
top  10 cm of t h e  sample and 11 percent  o r i g i n a t e  i n  t h e  l aye r  
10 t o  20 cm below the  surface.  
a r e  once more considered and a r e  again defined as being 20 c m  
th ick ,  it is  found t h a t  Zone D cont r ibu tes  43 percent while 
Zone S cont r ibu tes  only 32 percent. Thus t h e  a c t i v e  volume 
of  t h e  sample f o r  t h e  0 1 6  (n,p)N16 reac t ion  tends a l s o  t o  be 

concentrated towards the  detector .  
For the  geometry j u s t  considered, ice., a l a rge  S i 0 2  

sample wi th  the  neutron source located 15 cm above the  sur face  
and the  de tec tor  located 15 cm above t h e  su r face  and 40 c m  
from t h e  neutron source,  t h e  a c t i v e  volumes f o r  t he  capture  
gamma rays and f o r  the oxygen a c t i v a t i o n  gamma rays e s s e n t i a l l y  
coincide.  The r a t i o  of the  number of  s i l i c o n  capture  gamma 
rays  t o  the  number of  oxygen ac t iva t ion  gamma rays s t r i k i n g  
t h e  c r y s t a l  is 0.11. 
w i i i  dunliriate the spz~trrrr;l. 

I f  Zones S and D ( see  Figure B-1)  

Hence, t h e  oxygen a c t i v a t i o n  gamma rays 

Source 5 c m  Above Surface 

On t h e  bas i s  of t he  measured thermal neutron f l u x  
d i s t r i b u t i o n  reported i n  Figure B-2, c a l cu la t ions  were per- 
formed t o  determine the  ac t ive  volume f o r  both thermal neutron 
capture  and f a s t  a c t i v a t i o n  of oxygen f o r  t h e  following 
de tec to r  pos i t ions :  
40 c m  above the  surface,  (b) d i r e c t l y  above the  neutron source,  
50 c m  above the  sur face ,  (c) 5 c m  above the  sur face ,  30 c m  
from t h e  neutron source,  and (d) 5 cm above t h e  surface,  40 cm 
from t h e  neutron source. I n  cases  (a )  and (b) t h e  sample 

(a )  d i r e c t l y  above the  neutron source,  
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w a s  divided i n t o  29 segments, and i n  cases (c)  and (d) t he  
sample w a s  divided i n t o  128 segments. Equation (B-2) w a s  
used f o r  t h e  thermal neutron capture  i n  s i l i c o n  and e ua t ion  
(B-5), modified f o r  t he  14-MeV f l u x  of  1.1 x 10 
a t  the  sur face ,  w a s  used for  t h e  oxygen ac t iva t ion .  

The r e s u l t s  of  t h e  calculat ions.  l i s t e d  i n  Table B-1, 
i nd ica t e  t h a t ,  f o r  a l l  four de tec tor  geometries, about 60 
percent of  t h e  capture  gamma rays and about 75 percent of t h e  
oxygen a c t i v a t i o n  gamma rays which reach the  de tec tor  o r i g i n a t e  
i n  the  top  8 c m  of  t h e  sample. 

L e t  Zone S' by a volume of sample enclosed by a cy l inder  
having a 20 cm radius  and a 15 cm thickness  and centered 
d i r e c t l y  below the  neutron source,  and l e t  Zone D'  be a volume 
of sample i d e n t i c a l  t o  t h a t  of  Zone S' but  centered 10 c m  from 
a point  d i r e c t l y  below the  de tec tor  pos i t ion  and i n  the  d i r ec t ion  

6 3 n/cm sec  

of t h e  source. For detector  geometry (c) t he  ca l cu la t ions  
show t h a t  Zone S '  contr ibutes  29 percent of  t he  t o t a l  capture  
gamma-ray f l u x  while  Zone D' cont r ibu tes  62 percent and Zone S' 
cont r ibu tes  50 percent of the t o t a l  a c t i v a t i o n  gamma-ray 
f l u x  while  Zone D '  contr ibutes  68 percent.  For de tec tor  
pos i t i on  (d) Zone S '  contr ibutes  16 percent and Zone D '  con- 
t r i b u t e s  55 percent of the  capture  gama-ray f lux ;  Zone s '  
cont r ibu tes  36 percent aiid Z o r ; ~  E'  ~ ~ ~ t r i b ~ t e ~  55 percent nf . 

t h e  a c t i v a t i o n  gamma-ray flux. 

loca ted  i n  a hor izonta l  geometry ( i . e . ,  t h e  same height  above 
t h e  sample as t h e  neutron source),  sh ie ld ing  of t h e  de tec tor  
from t h e  region of the  s a m p l e  d i r e c t l y  below the  neutron 
source ( i . e . ,  Zone S') w i l l  improve somewhat t he  r a t i o  of 
capture  t o  a c t i v a t i o n  gamma rays.  The ca lcu la ted  r a t i o s  of 
s i l i c o n  capture  gamma rays t o  oxygen a c t i v a t i o n  gamma rays 
f o r  t he  four  de tec tor  posi t ions a r e  0.073 fo r  de tec tor  
pos i t i on  ( a ) ,  0.082 fo r  (b),  0.079 f o r  ( c ) ,  and 0.094 f o r  (d).  
Thus, i f  t he  gamma rays or ig ina t ing  i n  region S '  could be 

The above r e s u l t s  ind ica te  t h a t ,  i f  t he  de tec tor  is  
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Table B - 1  

ORIGIN OF GAMMA RAYS REACHING THE DETECTOR 
W I T H  SOURCE 5 c m  ABOVE SURFACE 

D e t e c t o r  

~ -- 

Percent of Gamma R a y s  
Incident on D e t e c t o r  

Pos i t  ion Layer C a p t u r e  A c t i v a t i o n  

0 - 2  c m  
2-8  c m  
8-20 c m  
> 20 c m  

0 - 2  c m  
2-8 c m  
8-20 c m  
> 20 c m  

0-5 c m  
5-15 c m  

15-30 c m  
3.0-50 cm 

0-5  c m  
5-15 c m  

15-30 c m  
30-50 ~m 

24  
38 
29 

9 

22 
37 
30 
11 

53 
32 
11 
4 

5 4  
33 
10 

3 

39 
41 
18 

2 

39 
4 3  
16 

2 

73 
23  
4 

--- 

74 
23 

3 
--- 
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eliminated, t h e  r a t i o s  would increase t o  0.11 fo r  de tec tor  
pos i t ion  (c)  and 0.12 f o r  detector  pos i t i on  (d) .  

gamma rays were ca lcu la ted  for  iron-sand-sample 2 and de tec to r  
pos i t ions  (a), (b ) ,  and (c). The r e s u l t s  are 0.21 f o r  de t ec to r  
pos i t ion  ( a ) ( t h e  measured value with a de tec tor  37 c m  above 
the  sample wa$ 0.15), 0.084 f o r  de tec tor  pos i t ion  (b ) ( the  
measured value with a de tec tor  52 cm above the  sample w a s  
0.087), and 0.28 f o r  de t ec to r  pos i t ion  (c )  ( t he  measured value 
with a de tec tor  37 c m  from the  t a r g e t  and 5 c m  above t h e  
sample w a s  0.31). This agreement between the ca lcu la ted  and 
experimental r e s u l t s  is  considered t o  be q u i t e  good. 

The r a t i o s  of i ron  capture  gamma rays t o  oxygen a c t i v a t i o n  

B-10 



APPENDIX C 
SAMPLE OF DIGITAL DATA 

Digital Data for Figure 27 
Capture Gannna-Ray Spectrum of Iron-Sand Sample Obtained Using 

Sandia Geometry With 4 c m  Paraffin Above Target 
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Digital Data for Figure 29 
Capture Gamma-Ray Spectrum of Iron-Sand Sample Obtained Using 

Sandia Geometry With 4 cm Bwonated Paraffin Above Target 
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